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EXECUTIVE SUMMARY 

Solar photovoltaic (PV) resources are the most common form of distributed generation in residential and 
commercial customer premises within electric distribution networks. A higher penetration of PV 
generation in distribution circuits will impose challenges on maintaining service voltages within the range 
of industry standards, power quality, and power flow. Buildings consume 74% of the electricity produced 
in the United States, and a significant portion of the building load is dispatchable, making them 
responsive to electrical grid needs. Oak Ridge National Laboratory—in collaboration with Southern 
Company; the University of Tennessee, Knoxville; and the Georgia Institute of Technology—is 
examining the PV integration issues in distribution-level electrical grids and developing integrated 
demand-side control and communication systems to enable responsive loads. The proposed responsive 
loads mechanism performs renewable generation following to increase the penetration of solar PV within 
each feeder. The specific objectives of this project are to (1) examine distribution-level PV integration 
scenarios to understand requirements, (2) undertake an end-to-end simulation-based design of a 
distributed control strategy of loads geographically near the PV generation asset to minimize the effect on 
the distribution feeder, (3) deploy and demonstrate the control technology developed in partnership with 
utilities, and (4) perform a scalability analysis at the utility scale.  

This 3-year integrated project aims to develop, demonstrate, and validate demand-side control technology 
to enable increased the penetration of renewables while mitigating challenges that arise due to their 
intermittency. Activities in Budget Period (BP) 1 focused on a literature review and the formal design of a 
control system for integrating local distribution with generation and loads. The team used modeling and 
simulation to evaluate the impact of varying buildings loads, variable PV generation, and power flow 
dynamics on the distribution circuit. The dynamic models developed in BP 1 were used in BP 2 to 
develop a model-based control design and a test bed. The test bed has enabled the simulation-based 
testing and comparison of different control designs and formulations applied to different configurations of 
the distribution grid, PVs, and building loads. The control approaches developed in BP 2 were 
implemented in BP 3 in the form of hardware deployed at the Central Baptist Church (CBC) in Knoxville, 
Tennessee, for testing and evaluation.  

The outcome of this project was the development and demonstration of open-source, low-cost, low-touch 
sensing and control retrofits to distributed PV generation and building loads that, in a coordinated fashion, 
provide the load-shaping response needed to integrate high levels of renewable penetration. This research 
addresses the target metrics by dynamically controlling a load with solar generation variability to 
minimize the extent of two-way power flow, enhance reliability, facilitate high PV penetration (>100% of 
peak load in a line segment), and generate scalable software and hardware solutions adaptable to any 
penetration levels. The research and development activities are focused and designed to be impactful 
within the relevant 2020 targets time frame. 

An accurate open-source integration simulation framework for end-to-end control design was developed 
and deployed at the CBC facility for testing and evaluation. This final report provides a detailed review of 
the technical results achieved during this 3-year integrated project. A novel spectral analysis of PV data is 
demonstrated to derive the requirements of the control design. A detailed simulation-based analysis of PV 
integration at increasing penetration levels is presented using 1 year of PV data to demonstrate the impact 
on the distribution circuits. Two different control strategies were developed and demonstrated via 
simulation to track variable PV generation with adaptive load dispatch. The report concludes with a 
summary of accomplishments and recommendations for a path forward. 
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1. BACKGROUND 

Solar photovoltaic (PV) resources are the most common form of distributed generation (DG) in residential 
and commercial customer premises within an electric distribution network. Rooftop solar PV units can 
serve part of the local loads, thereby decreasing stress on the distribution feeder and improving overall 
system performance (e.g., by reducing feeder losses). However, the large, rapid swings in power output 
from a very large numbers of PV resources can have the opposite effect, increasing stress on the 
distribution feeder, degrading system performance, and consequently creating serious challenges for 
distribution network operators. When PV generation is greater than the local demand, the excess power 
flow from PV inverters produces a reverse power flow in the feeder. This creates a voltage rise, possibly 
causing a violation of node voltage limits, and reduces the useful life of transformers due to rapid tap 
adjustments that are made while attempting to regulate the feeder voltage [1]. These observed effects are 
a clear sign that conventional forms of voltage regulation, which are predicated on power flowing in one 
direction, are insufficient to incorporate large amounts of solar power. The present inability to regulate 
voltage in the presence of high PV penetration is a primary cause of the relatively limited PV 
deployments seen in current circuits that support largely residential and commercial loads. 

Existing control strategies can be enhanced to overcome this problem by introducing responsive loads that 
perform renewable generation following. By causing demand for electricity to follow the availability of 
solar power, we can significantly reduce or even eliminate the reverse power flows across the feeder and 
the associated undesirable voltage fluctuations. There are two general methods for managing loads: 
indirect load control and direct load control. With indirect load control, the power consumption of a load 
is controlled manually by the energy customer or automatically by software within the load per local 
considerations (e.g., electricity prices). With direct load control [2–4], the power consumption of a load is 
controlled by the utility or system operator, regardless of the customer’s local circumstances. With direct 
local control, it is possible to precisely adjust electricity use, but it is difficult to gain customer acceptance 
if local needs are compromised. International experiences with direct and indirect load control are 
reviewed in Heffner et al. [5] in which the authors identify specific approaches that have enabled 
customer loads to effectively participate in power system control. 

Several types of distributed energy resources (DERs) have been proposed to augment direct and indirect 
control systems, including battery storage [6], plug-in electric vehicles [7–9], electrically powered 
residential water heaters (WHs) [10–11], and thermostatically controlled loads (TCLs) used for residential 
space heating and cooling [12–15]. WHs and TCLs are interesting because they store energy but do so in 
a thermal form rather than an electrical form. These loads can generally withstand relatively frequent, 
short interruptions without a significant reduction in end-use performance. However, these DERs are 
relatively small and require a communication infrastructure to aggregate sufficient numbers of devices to 
perform as a useful control resource.  

A significant amount of research has focused on aggregating many small, individually controlled on/off 
TCLs [16–20]. The results indicate that low-dimensional controls, such as global adjustments of 
thermostat settings or switching the state of many individual TCLs, can create hour-long correlations 
between the dynamics of individual TCLs. Several approaches have been pursued, including statistically 
based methods [16], linear-response transfer functions [14–15], state estimation-based methods [17], and 
deterministic protocols [13]. Based on this body of work, aggregating many small, residential-scale TCLs 
for a relatively fast and flexible demand response (DR) appears to be feasible. 

TCLs—such as air-conditioning systems, heating systems, and WHs—are present in most residential and 
commercial buildings, and they are particularly well suited to large-scale, distributed control [16]. 
However, these types of loads present difficult control challenges that arise from the complex, nontrivial 
thermodynamic and hydrodynamic coupling between the individual cooling and/or heating loads and the 
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many state variables that must be handled. Although the dynamics of large commercial heating, 
ventilation, and air-conditioning (HVAC) systems in particular might be complex, a low-dimensional 
control is economically necessary (i.e., the control must use relatively few inputs and outputs to enable 
accurate control over the total HVAC power consumption while keeping a building’s occupants 
comfortable). 

To provide a response that can influence the performance of the distribution circuit, many thermostats 
must be “ganged” together so that their operations can be coordinated. This method has been used in 
several other works [17–21] for infrequent DR, such as peak shaving, and in Goddard, Klose, and 
Backhaus [18] for faster DR control. Lu [22] presents the direct control of HVAC units that follows 
regulation signals and proposes a direct load control algorithm that provides intra-hour load-balancing 
services by using aggregated HVAC loads. This could enable small residential or commercial customers 
to participate in ancillary service markets in the future. Callaway [12] proposes a system identification 
approach based on Fokker-Planck diffusion models to design a direct control strategy to manage large 
numbers of HVAC units. An extended optimal centralized control strategy with comfort-constraints is 
proposed in Parkinson et al. [23] and Wang et al. [24]. This method was implemented on a simulation test 
bed to investigate the regulation and load-shifting service supported by HVAC units to offset the 
intermittency of renewable resources in a self-regulating distribution system. Katipamula and Lu [25] 
studied various residential HVAC load control strategies that can be employed to mitigate price volatility. 
Yoon, Bladick, and Novoselac [26] propose a controller that can be used to control an HVAC system in 
response to the retail price of electricity. 

To summarize this review, buildings can play a significant role in fast DER programs. For example, it is 
estimated that some buildings can shed 60% of HVAC demand for 2 h load shed events and 80% for 
20 min events for facilities with rooftop chiller units that can turn off compressors [27]. Large office and 
college buildings that can make set point adjustments to reduce demand can shed 50% for both 2 h events 
and 20 min events [27]. Based on prior research, refrigerated warehouses—particularly medium-
temperature refrigeration systems—are known from to be able to reduce their loads by at least 25% for 
2 h without a serious change in temperature. Data centers can temporarily reduce their HVAC use also. 
Such loads are a resource that can give grid operators the tool they need to manage an electrical grid that 
receives an intermittent supply from a high percentage of renewable power sources. 

The high penetration of utility-scale solar PV power will inevitably bring challenges to power system 
planning and operations [28–29] due to the variability and nonexistent or limited capability to dispatch 
solar power. Because the PV inverters’ objective is to maximize energy output, changes in solar 
irradiance directly impact the produced power. The burden and expense for system operators to include 
solar generation come in the form of an increased need for fast-ramping spinning reserves. One typical 
method for addressing this challenge is to integrate advanced solar forecasting techniques into the 
operations center.  

The impact on system protection is more eminent in the radial distribution system. Traditional distribution 
systems are designed for unidirectional power flow from a substation bus to the feeder end. Accordingly, 
the protection devices react to the current flow from the bus side in case of short-circuit fault. With solar 
PV installations on the feeder, bidirectional power flow will occur and could unnecessarily trip circuit 
breakers and reclosers. Moreover, the short-circuit fault current contribution is dramatically smaller from 
a PV system than from a synchronous generator, which brings challenges when setting relays and might 
require increased low current-sensing accuracy. 

The impact of solar PV systems on distribution feeder voltage has been investigated in several US 
Department of Energy projects, such as the Renewable System Interconnection Study, and the High 
Penetration PV Integration, as well as research papers [30–34]. One common finding is that an 
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overvoltage event could be triggered when the solar PV system is installed at the end of a feeder. During 
high PV generation and low load periods, voltage rise could occur due to reverse power flow. Active 
power curtailment of PV inverters [31] and the integration of distributed energy storage systems [32] can 
help address overvoltage issues. A coordination strategy of various reactive power resources—including 
substation electronic load tap changer (LTC), capacitor bank, energy storage, and PV inverter reactive 
power injection—is required to optimally manage the distribution voltage profile while minimizing the 
solar power curtailment.  

Power converters serve as the interface between PVs and the power grid. These converters are crucial for 
power conversion and conditioning, maximum power point (MPP) tracking, and potential grid ancillary 
services. In this project, the team developed an end-to-end proactive automated control of responsive 
building loads with the objective to minimize voltage impacts due to high penetrations of PVs while 
maintaining customer comfort. 

2. PROJECT RESULTS AND DISCUSSION 

2.1 SPECTRAL ANALYSIS OF SOLAR PV POWER OUTPUT 

This section presents the spectral analytics of solar PV power generation and the power consumption of 
multiple building TCLs. Spectral analytics of solar PV power provide an understanding of the PV 
frequency content due to solar irradiance and disturbance in PV generation. The analyses define the 
bandwidth over which TCLs can operate to verify that their frequency bandwidths match the one for the 
solar PV generation. This information can be used to optimally assign the TCLs in different buildings to 
the appropriate frequency band. Figure 1 illustrates the proposed approach. First, the spectral 
(i.e., frequency) contents of the collected time-domain solar PV and building TCLs power data are 
captured via Fourier transform operations. The filtered PV power is then fed to the controller along with 
other parameters to dispatch different building TCLs that match the corresponding PV frequency content 
(i.e., timescale). 

 

Figure 1. The proposed PV power filtering approach. 
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The frequency-domain analysis was conducted on 12-month PV and buildings’ TCLs measurement power 
data. The PV measurement power data were collected from a 13-kW solar PV panel located on the roof of 
a building at Oak Ridge National Laboratory (ORNL). The relatively fast, medium, and slow frequency 
bands illustrated in Figure 2(a) are based on measured solar power output recorded during a sample day, 
where LPF stands for low-pass filter, BPF stands for band-pass filter, and HPF stands for high-pass 
filter. Figure 2(b) shows the time-domain PV power profile for one summer day and its corresponding 
low- (<1 mHz), medium- (1–10 mHz), and high- (>10 mHz) frequency contents. 

 (a)  (b) 

Figure 2. (a) Filtering process of input PV power; (b) PV power profile for one summer day in 2015 and its 
corresponding low-, medium-, and high-frequency content. 

 
The time-domain PV power data are converted to frequency-domain data via the Fourier transform 
operation [35]. Figure 3 shows 24 h time-domain PV power profiles for eight summer days selected at 
random and their corresponding frequency-domain profiles. Significant generation variability 
(i.e., fluctuations) in the time-domain power profiles is illustrated in Figure 3(a). In Figure 3(b), the 
spectral analysis of solar PV power data is observed to contain a wide range of frequencies 
(i.e., timescales), ranging from a few hertz and fractions of hertz (sub-seconds to seconds) to multiple 
millihertz (minutes) and fractions of millihertz (hours). This wide range in frequency can be divided into 
relative categories of fast, medium, and slow frequency ranges. 
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(a) 

 
(b) 

Figure 3. (a) The time-domain solar PV power profiles for eight summer days collected from a 13-kW solar 
PV panel showing fast and large fluctuations of PV outputs and (b) their corresponding frequency-domain 

power profiles. 

Most of the PV energy is found at frequencies lower than 1 mHz (~15 min). Also, only a small amount of 
PV energy is found at frequencies between 1 and 100 mHz (~15 min to 10 s). PV energy at frequencies 
higher than 100 mHz is almost negligible. The low-frequency content corresponds to daily solar power 
variations, which are mainly from the parabola shape in the time-domain power profiles. Medium-
frequency contents come from changes in solar irradiance due to temporary cloud cover and other factors. 
High-frequency contents come from changes due to other disturbances (e.g., passing flocks of birds, local 
intermittent shading). 

The spectrogram [36] is used to visualize the time-frequency content of the PV power. It visualizes how 
the PV power spectrum of frequencies varies with time and is used to compute the time-frequency power 
spectral density (PSD) [37–38]. Figure 4 demonstrates the time-frequency PSD for the PV power output 
for one randomly selected summer day. The high-frequency content, which corresponds to the fast 
fluctuations of the PV power in the middle of the day, has been captured at the true time moments. 

Boxplots [39] are used to visualize such 
statistics of PV frequency content. The lower 
and upper lines of the “box” represent the 25th 
and 75th percentiles of the sample, 
respectively; the line in the middle of the box is 
the sample median; and the extended lines from 
each end of the box represent the minimum and 
maximum values in the sample. Figure 5(a) 
illustrates the 2015 annual statistics of the PV 
power output frequency contents. About 98% 
of the PV energy is located at the low-
frequency band (lower than 1 mHz [~15 min]). 
Also, only a little of the PV energy (about 2%) 
is found at frequencies between 1 and 100 mHz 
(~15 min to 10 s). PV energy at frequencies 
higher than 100 mHz is almost negligible and 
is not shown in Figure 5. The dispersion from 
the medians is very large, especially at low 

 
Figure 4. The PV power output time-frequency PSD for 

one summer day, illustrating how the PV power 
spectrum of frequencies varies with time. 
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frequencies (e.g., ~3 kW at the 0.01 mHz, ~0.3 kW at the 0.05 mHz) due to many factors, such as 
daily/hourly variations and diffuse/beam solar irradiance. Figure 5(b) illustrates the 2015 seasonal 
statistics of the PV power output frequency contents. The median powers are highest in summer, 
moderate in fall and spring, and lowest in winter at this location. 

 
 (a) 

 
 (b) 

Figure 5. Boxplots illustrating the 2015 (a) annual and (b) seasonal statistics for the spectrum of PV power 
outputs. 

The residential homes and commercial buildings are usually equipped with batteries for energy storage. 
The batteries are sized based on the solar PV rating [40]. For example, for the solar PV power output 
shown in Figure 2, total energy over 1 day that must be stored is 61.5 kWh, assuming that all solar PV 
energy is going to the battery. However, a spectral analysis of solar PV helps divide PV power to low-, 
medium-, and high-frequency components. This report shows that HVAC loads can be used to consume 
low and medium frequencies of solar PV power, which leaves high-frequency components. Batteries can 
be used to store/offset the high-frequency components. By doing so, the size of the battery is reduced 
because the amount of energy over 1 day that must be stored will be reduced significantly (only the high-
frequency part of the PV generation is stored). In this case, for the solar PV profile in Figure 2, only 
0.76 kWh must be stored over that day. For this particular day, there is a huge reduction in total solar PV 
energy consumed by the battery over 1 day. Figure 6(a) shows battery states for the solar PV profile in 
Figure 2. Using these values, the state-of-charge (SOC) of the battery is illustrated in Figure 6(b). It is 
assumed that the initial SOC of the battery was 50%. 
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(a) (b) 

Figure 6. (a) Charging/discharging power levels and (b) SOC of the battery. 

As seen in Figure 6, battery level changes from charging to discharging mode in seconds. Although there 
is almost negligible decrease in the SOC (about 2.5%), the battery switches from discharging to charging 
mode 7,440 times in that day. This could damage the battery or reduce its life cycle. Another option is to 
use a flywheel storage system [41] to alleviate this problem. 

2.2 FREQUENCY-DOMAIN ANALYSES FOR THE VARIOUS BUILDING TCLS 

The team conducted frequency-domain analyses for the various building TCLs—such as WH, HVAC, 
and refrigeration—for optimal employment of these loads to accommodate the different frequency 
contents of PV generation. Figure 7(a) illustrates the annual statistics of the on/off HVAC power 
consumption frequency contents for a daily power consumption of a 3 ton HVAC unit recorded every 15 
s for the year 2016. Most of the power consumed, which lies at frequencies less than 10-2 Hz, corresponds 
to the low-frequency (less than 10-4 Hz) and medium-frequency (between 10-4 Hz and 10-2 Hz) bands of 
the PV-generated power. Figure 7(b) illustrates the annual statistics of the WH power consumption 
frequency contents for a daily power consumption of a 50 gal tank unit with 4 kW resistive heating 
elements and a 0.9 efficiency factor recorded at 1 min intervals during 2012. Figure 7(c) illustrates the 1 
month statistics of the refrigerator power consumption frequency contents for the daily power 
consumption of a 4.5 kW refrigerator [42] recorded every 30 s for 2 months during 2016. These 
refrigeration compressor power consumption data are described in Fricke et al. [43]. Figure 7(d) 
illustrates the frequency spectrum of the average powers generated and consumed by PV/building TCLs 
for comparison. The frequency content of the average solar PV power output matches those for the on/off 
HVAC, WH, and refrigeration power consumptions. Results show that nearly all the PV output (about 
98%) is contained within frequencies lower than 1 mHz (equivalent to ~15 min), which is compatible for 
consumption with local building TCLs. 

A load duration curve is used in electric power generation to illustrate the relationship between generating 
capacity requirements and capacity use. A load duration curve is similar to a load curve, but the demand 
data are ordered in descending order of magnitude rather than chronologically. This concept was used to 
understand the demand of HVAC, WH, and solar PV generation over 1 year. This will determine power 
consumed over the year so that this information can be related with solar PV generation. 
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 (a) 

 
 (b) 

 
 (c) 

 
 (d) 

Figure 7. Boxplots illustrating the annual statistics for the spectrum of (a) on/off 
HVAC, (b) WH, and (c) refrigeration power consumptions and (d) compared 

with the one of PV. 

Figure 8 compares the power consumed by a 
HVAC and a WH and the power generated by solar 
PV over 1 year. The HVAC curve shows that at 
1,563 h in 1 year (17.8%), HVAC demand is 
greater than 1.5 kW. The WH curve shows that the 
WH was used for 283 h in that year (3.2%). The 
PV curve shows that the 13 kW solar PV panel 
generates 5 kW (38% of its total capacity) for more 
than 1,500 h in 1 year. PV generation and HVAC 
consumption show similar behavior. Because a 
WH is on/off, it does not follow solar PV 
generation. However, by aggregating HVAC and 
WH loads, the solar PV signal can be closely 
tracked. A centralized controller will take a set of 
these loads and dispatch them to match solar PV 
generation. Details of the controller formulation 
found in Section 2.5. 

2.3 DISTRIBUTION-LEVEL PV INTEGRATION AND PENETRATION ANALYSIS 

This section presents a steady-state and quasistatic time series (QSTS) power flow analysis on the 
Southern Company distribution circuit that exemplifies the impact of high PV penetration on the 
distribution circuit. A background on distribution system voltage control is presented in Appendix A.1, 
while a background on coordination of building HVAC load control with smart PV inverters is presented 
in Appendix A.2. The team also conducted a similar QSTS power flow analysis on the Institute of 

 
Figure 8. Comparison of duration curves for 

HVAC, WH, and PV powers. 
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Electrical and Electronics Engineers (IEEE) 13 Node Test Feeder, and the results are presented in 
Appendix A.3. 

Data from two distribution feeder circuits (Feeders 1 and 2) provided by Southern Company were 
obtained in the format of a CymDist 5.04.12 Zipped Self-Contained Study. The data were converted to 
the OpenDSS data format for further study and analyses. This section initially presents power flow and 
LTC analyses for a feeder distribution circuit within Southern Company’s power system in which three 
single-phase solar PV inverters that operate only in maximum power-point tracking (MPPT) mode are 
placed in the farthest ends of three individual phases as the worst-case scenario. 

Different solar PV penetrations were investigated, and it was concluded that at a 30% penetration level, 
the annual accumulative LTC operation count will double as compared to the no-PV baseline case. The 
team further investigated the operational impacts of solar PV inverters on the same distribution feeder 
circuit while considering the PV inverter with constant power factor (PF) function. Feeder Circuit 1 is 
shown in Figure 9, and Feeder Circuit 2 is shown in Figure 10. The separated OpenDSS model for Feeder 
Circuit 1 is used to analyze the solar impact on the feeder.  

Figure 9. Feeder Circuit 1 separated using 
OpenDSS Tools. 

Figure 10. Feeder Circuit 2 separated using 
OpenDSS Tools. 

Three individual single-phase feeder voltage regulation transformers are installed in the middle section of 
Feeder 1. Major specifications and parameters are listed as follows. 

• 7.2 kV, 760 kVA per phase. 
• LTC with 32 steps, +/- 10% and 16 steps upper, 16 steps lower. 
• Potential transformer ratio is 60. 
• Regulation set point at 124 V with 3 V bandwidth. 
• 45 second time delay. 
• No line drop compensation. 

The majority of the loads are single-phase loads with a total number of 641 in both feeders. Five large 
loads are three-phase loads. Load measurements were captured at 15 min intervals at both feeder circuit 
breakers and at the substation transformer from March 1 to May 1, 2016, and from July 1 to September 1, 
2016. The daily load profiles (real power P and reactive power Q) are plotted in Figure 11 for one day on 
July 2, 2016. The peak loads during the data acquisition period are summarized in Table 1. The annual 



 

10 

peak load for Feeder 1 is assumed to be 2,000 kVA, which is used as the basis for the solar PV 
penetration level in the simulation and load tap change analyses. 

 

Figure 11. Feeders’ daily load profiles (measurements on July 2, 2016, 00:00AM to 11:45PM). 

Table 1. Peak load based on 15 min measurements from July 1 to September 1, 2016 

Feeder 1 Feeder 2 Substation 
P (kW) Q (kVar) S (kVA) P (kW) Q (kVar) S (kVA) P (kW) Q (kVar) S (kVA) 
1797.60 375.30 1836.36 2597.6 1295.20 2902.60 4905.20 1716.40 5126.23 

 

The intent is to analyze the situation when the solar PVs are installed at the very end of the feeders, which 
is known to be the worst-case scenario, and the associated voltage regulation problems, as depicted in 
Figure 12. In this study, the team focused on only one feeder, Feeder 1, since it contains an LTC 
transformer, i.e., voltage regulator, in the middle section of the feeder. 

As aforementioned, Feeder 1 annual peak load 
is assumed to be 2,000 kVA based on the field-
measured peak load at 1,836 kVA during a part 
of the year 2016. Three single-phase solar PV 
inverters are placed at each phase of the feeder 
end and connected to the bus as listed in 
Table 2. Since we are investigating the LTC 
operations on Feeder 1, we use this feeder’s 
annual peak load as a basis when defining solar 
PV penetration levels, e.g., 100% PV 
penetration corresponds to 2,000 kVA solar PV 
installations. At the substation level, this is 
roughly around 30% penetration, considering 
peak load measurement during the summer, 
i.e., 5,126 kVA, and the substation 
transformer’s rated capacity is 7,500 kVA. 

 

 

Figure 12. Distribution voltage regulation problems 
due to solar PV generation. 
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Table 2. Solar PV inverter configurations. 

PV inverter Maximum capacity (kVA) 
(100% feeder penetration) 

Maximum capacity (kVA) 
(30% feeder penetration) Phase 

PV1 667 200 A 
PV2 667 200 B 
PV3 667 200 C 

 

Snapshot power flow solutions for a typical day at noon time were derived for a baseline case (no PV), 
30% PV case, and 100% PV case, as shown in Figures 13(a)–(c). In the circuit plots, different colors 
denote the voltage per unit at different feeder locations, and the line thickness represents the line current. 
Comparing the plots, one can observe that the increased solar PV generation will create higher voltage at 
the feeder end where the PV is connected and the LTC transformer node.  

The feeder voltage profiles for the same time snapshot are illustrated using spider plots as shown in 
Figure 14 for the baseline case (no PV), the 30% PV case, and the 100% PV case, which are discussed as 
follows:  

• Baseline case (no PV): Phase A and B LTCs do not change the tap position because the voltage is 
within the control bandwidth, but for Phase C, the LTC has to move up to a higher position to 
maintain the voltage profile within the American National Standards Institute (ANSI) limit due to the 
heavy load in this phase and high line voltage drop.  

• 30% PV case: With the same load profile, Phase A and Phase B LTCs still do not operate, but solar 
power generation has elevated their voltage profiles; Phase C LTC still moves up but in fewer steps. 

• 100% PV case: With increasing solar power generation, both Phase A and Phase B LTCs now move 
down to lower positions, and Phase C tap moves up. This has verified the fact of increasing LTC 
operation due to the increased solar PV generation at one-time snapshot. The team demonstrated that 

   

 (a)  Baseline case (no PV)  (b) 30% solar PV case  (c) 100% solar PV case 

Figure 13. Snapshot power flow for Feeder 1 circuit.  
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the increased LTC operation counts over a long period of time due to the solar power fluctuations for 
different penetration levels. 

 
 (a) Baseline case (no PV) 

 
 (b) 30% solar PV case 

 
 (c) 100% solar PV case 

Figure 14. Feeder 1 snapshot voltage profiles (spider plots).  

To closely observe the time-varying power and voltage, one day period simulations at 1 min time steps 
were performed by using the OpenDSS software package for the baseline case and the 100% PV 
penetration case for comparison. Figure 15 illustrates the power and voltage dynamics at different feeder 
locations, such as the feeder head, feeder end, fixed capacitor bank, and—most importantly—the LTC 
location. At midday, when solar power is ramping up, the feeder voltages at different locations become 
higher than the baseline case, and the feeder net load reduces due to the solar power generation. 
Figure 15(f) demonstrates significant voltage variability at the voltage regulator node during this time 
period, hence potentially leading to excessive tap change operations. 
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 (a) 

 
 (b) 

 
 (c) 

 
 (d) 

 
 (e) 

 
 (f) 

Figure 15. Power and voltage dynamics during a 1 day simulation. (a) Solar PV power generation 
and PV node voltage, baseline vs. 100% PV; (b) total net load, baseline vs. 100% PV; (c) head voltage, 
baseline vs. 100% PV; (d) PF, baseline vs. 100% PV; (e) cap bank node voltage, baseline vs.100% PV; 

and (f) LTC transformer downstream-side node voltage, baseline vs. 100% PV. 
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To investigate the potential effects on LTCs, the 
OpenDSS simulations for a 1 week time period at a 
1 min time step were run for the baseline case and 30% 
PV penetration case. The voltage regulator load tap 
positions (-16 to +16) for a 1 week period for baseline 
vs. 30% PV are plotted in Figure 16. Significant 
increases of tap operations are shown. The cumulative 
tap changes are from 1 to 6 changes for the Phase A tap, 
1 to 8 changes for the Phase B tap, and 20 to 37 changes 
for the Phase C tap. 

Figure 17 details the solar power variations and voltage 
fluctuations for the individual phases. When the solar 
power is ramping up, the voltage at the regulator node 
increases and might exceed the LTC control bandwidth, 
that is (124 V +/- 1.5 V) × 60. When the voltage 
increases or decreases beyond the upper or lower 
bandwidth, the LTC will be enabled after a 45 s time delay. The load tap may move up or down several 
steps to bring the feeder voltage back within the limits.  

 
 (a) 

 
 (b) 

 
 (c) 

Figure 17. Voltage fluctuations and load tap changes due to solar power ramping for 
baseline vs. 30% PV. (a) Phase A, (b) Phase B, (c) Phase C. 

 

 

Figure 16. Voltage regulator LTC positions 
over a 1 week period for baseline vs. 30% PV. 
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The accumulation of load tap changes over a 1 week time period for the baseline case and various PV 
penetration levels from 10% up to 150% is plotted in Figure 18. At 10% PV penetration, the load tap 
changes increase by 23%; at 20% PV penetration, the load tap changes increase by 59%. Substantial load 
tap changes increase will occur for further increases in PV penetration levels. 

 
(a) 

 
 (b) 

Figure 18. Cumulative LTC operation counts for different PV penetrations. (a) Load tap 
changes accumulation over 1 week and (b) total operation counts in 1 week. 

To further validate the effects of different PV penetration levels on the LTC operations, simulations of the 
whole 1 year time period were conducted at a 1 min time step for 16 different scenarios, including the 
baseline case and the PV penetration from 10 to 150%. The tap change operation count accumulation is 
shown in Figure 19. The simulations show that at less than 20% PV penetration, the cumulative load tap 
changes are roughly the same; at 30% PV penetration, the cumulative load tap change counts are doubled 
compared with the baseline case and then almost linearly increase with the increasing PV penetration 
levels at a rate of about 1,500–1,600 counts every 10% penetration increase. 

 
 (a) 

 
 (b) 

Figure 19. Cumulative LTC operation counts for different PV penetrations. (a) Total operation counts in 
1 year and (b) load tap changes accumulation over a 1 year period. 

Then, the team further investigated the operational impacts of solar PV inverters on the same feeder 
distribution circuit, but they amended the PV inverter operation from only MPPT mode to constant PF 
mode by using the OpenDSS solar PV inverter element, as demonstrated in Figure 20, although one 
snapshot of the feeder circuit voltage (by color) and current (by line thickness) is illustrated in Figure 21. 
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The steady-state power flow analyses were performed in OpenDSS for the baseline (no PV), 30% PV 
with PV inverter on MPPT mode only, and 30% PV with PV inverter on MPPT and fixed PF at 0.90 
(leading or lagging). When the PV inverter contributes reactive power, the active power will be limited 
due to the fixed or rated hardware capacity, so the MPPT will only be valid for the active power below 
the limit needed for reactive power compensation. Figure 22 illustrates the feeder-distance voltage profile 
for the three cases, and it is observed that the feeder voltage will be further elevated if the reactive power 
function is enabled. 

 

Figure 20. Solar PV inverter model in OpenDSS [157]. 

 

 

Figure 21. The Southern Company’s feeder circuit under investigation (30% penetration 
by capacity). 
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 (a) (b) (c) 

Figure 22. Feeder-distance voltage profile for the three cases under investigation. (a) No PV, (b) MPPT 
only, and (c) with reactive power (PF = 0.9). 

For the LTC operation impacts, the team analyzed the cumulative operation counts of the LTCs 
associated with the feeder voltage regulators. The results are illustrated in Figure 23 for a 1 week period. 
The LTC operation count was further increased with a solar PV inverter with a fixed PF function. This 
also concludes that without proper coordination between solar PV inverters and other voltage control 
devices, the operation impact tends to deteriorate. The team explored the efficacy of co-optimizing the 
load modulation/control schemes along with smart inverter control schemes to achieve two key 
objectives: absorb the PV powers and optimize the power flow. 

 
 (a) 

 
 (b) 

Figure 23. LTC cumulative operations for 1 week (30% percent PV by capacity). (a) PV inverter with MPPT 
only and (b) PV inverter with MPPT and PF = 0.9. 

To meet the first objective, the installed capacity of the PV was increased in comparison with peak load 
on a given segment by using load control to absorb most of the energy generated by the PV. To meet the 
second objective, a coordinated supervisory control of smart inverters is performed in a given segment to 
optimize power flow in the distribution circuit to operate in conjunction with the existing distribution 
voltage control assets. An updated architecture for an end-to-end system will be tested in a simulation and 
on a test bed for evaluating performance for improving voltage stability within distribution circuits with 
high penetration of solar PVs. 
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2.4 DISTRIBUTED VOLTAGE CONTROL 

This section presents a distributed optimal control mechanism for PV inverters to regulate the voltage and 
reduce network losses. The coordination and optimal control of PV inverters in the proposed control 
mechanism are achieved in a distributed manner by solving a small local optimization problem for each 
PV with limited information exchange. 

Increasing the penetration of variable generation sources such as solar PVs leads to more frequent voltage 
fluctuations in a distribution power grid [44–45]. The PV inverters can provide fast and flexible voltage 
regulation by controlling the active and reactive power output in real time [46]. Traditionally, the 
distribution system operator (DSO) optimizes the control and operation of voltage regulation and reactive 
power compensation devices in the distribution network by solving a centralized optimal power flow 
(OPF) problem, known as the integrated volt-var controller (IVVC) [47–49], in a distribution 
management system (DMS). However, the centralized method faces the following challenges when many 
PV inverters are integrated into the distribution network. 

• The complexity and size of a centralized optimization problem increase significantly with the number 
of PV inverters, making it difficult to solve. The computational time might not satisfy the 
requirements for mitigating fast-changing solar power generations.  

• The centralized methods need communication connections between the DSO and every PV inverter. 
The volume of data flow over the communication network will increase dramatically and could lead 
to a communication bottleneck.  

• Centralized control might not be resilient to incidents. When the DMS is down, the whole system will 
fail. This in known as a single point of failure. 

To address these challenges, the team developed a distributed optimal voltage control method for PV 
inverters that is efficient to solve and only requires limited communications. Each PV inverter will 
optimize its own active and reactive power output by solving a local optimization problem based on its 
own and neighbors’ information. Through limited information exchange among the PV inverters, the 
distributed optimization algorithm can achieve the global optimum within a few iterations. In this work, 
the problem was first formulated as a second-order cone programming (SOCP)-based centralized 
optimization model for voltage regulation and loss minimization in distribution networks. Then, the 
centralized optimization model was decomposed into small local optimization problems for each PV 
inverter. The reformulated problems were solved in a distributed manner by using the alternating 
direction method of multipliers (ADMM) [50–52]. The ADMM is a promising distributed algorithm that 
has fast and stable convergence. The convexity of the developed model guarantees the convergence of the 
distributed algorithm and the global optimum. Case studies are provided in which the developed ADMM-
based distributed optimal PV control method is validated by being compared with the centralized method. 
The efficacy of the proposed method is demonstrated through OpenDSS [53] simulations. 

The team formulated a centralized optimization model for PV control based on the SOCP-based branch 
flow model [54] of distribution networks. The objectives are to minimize the total nodal voltage deviation 
and network power loss as: 

 , (1) 

so that 

( )( )2
1 0 0 2min 2i i ij iju v u u r lv v- + +å å
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 , (2) 

 , (3) 

 , (4) 

 , (5) 

 , (6) 

 , (7) 

 , (8) 

 , (9) 

  , (10) 

 , (11) 

where ui is the square of the voltage of node i; lij is the square of the current in line ij; u0 is the square of 
nominal voltage, which is 1.0 p.u.; vi is the nodal voltage; Pij and Qij are the active and reactive power in 
line ij; PG,i and QG,i are the active and reactive power injections at the substation node; SG,i is the capacity 
of the substation; SPV,j, PPV,j and QPV,j are the capacity and active and reactive power output of the PV at 
node j; and PD,j and QD,j are the active and reactive power demand at node j. 

Equation (1) is the objective function with two terms representing the total nodal voltage deviations and 
network power loss, respectively, and   are the weighting factors of the two objectives. The balance 
or trade-off between the two objectives can be adjusted by setting the weighting factors. Equation (2) 
represents the relationship between u and v in a relaxed convex form. Equation (3) is the relaxed SOCP 
constraint that represents the relationship between active power, reactive power, voltage, and line current. 
Equations (4) and (5) are the nodal active and reactive power balance equations. Equation (6) indicates 
the voltage drop between the two end nodes of a distribution line. Equations (7) and (8) represent the 
capacity of PV inverters and the substation, respectively. Equation (9) is the maximum active power 
generation limit of the PV inverter. Equation (10) is the nodal voltage limit. Equation (11) is the line 
current limit. This SOCP-based model is a strictly convex optimization model. The proposed model is a 
convex model that contains some convex relaxations with exactness [55].  

Next, the team formulated the general form consensus optimization [56] for optimal voltage control of PV 
inverters in distribution systems based on ADMM as follows: 
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 , (12) 

where λT is the transpose of Lagrangian multiplier, and ρ is the iteration step size. Equation (12) is the 
augmented Lagrangian function of the objective function in Eq. (1), where fi(xi) is the same with the 
objective function in Eq. (1). 

 , (13) 

 , (14) 

 . (15) 

Equations (13)–(15) are the iterations in ADMM, and k is the iteration number. Equation (13) is the 
optimization model of each PV; arg min indicates the values of xi, which makes the objective function 
reach minimum value. Equation (14) updates the global information, where kg is the number of coupling 
variables in association with the global variable, and G(i,j)=g is the function of the global variable and 
local variables. Equation (15) updates the Lagrangian multiplier. The following criteria in Eq. (16) will be 
applied to check the convergence: 

 . (16) 

Equation (16) indicates that the 2-norm of dual residual s and primal residual r are less than the preset 
thresholds ε1 and ε2. The dual residual is the difference between the coupling variable and the global 
variable at each iteration. The primal residual is the difference between the values of the global variable at 
iteration k and the previous iteration k-1. The smaller difference indicates that the solution is approaching 
the global optimum. The whole distribution network is partitioned into several subsystems for PVs. 
Taking Figure 24 as an example, the system is partitioned into two subsystems: S1 and S2. 

 

 

Figure 24. Subsystems in a distribution network with PVs. 
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The boundary nodes are i and j, and the boundary line is lij. Each subsystem has a local copy of global 
variables. The global variables will guarantee the consensus between the two subsystems. The 
information exchange between the two subsystems is shown in Figure 25. The flow chart of the ADMM-
based distributed optimization algorithm is shown in Figure 26. 

 

Figure 25. Information exchange between two subsystems. 

 

Figure 26. Flow chart of ADMM-based distributed optimal control of PVs. 

Then, the team presented the implementation, simulation, and case studies of the proposed method. The 
proposed model was implemented in MATLAB and solved by using CPLEX [57] on a personal 
computer. The optimization results of the distributed algorithm (i.e., the active and reactive power output 
of the PV inverters) will be passed to OpenDSS as input for distribution system simulations to study the 
effectiveness of the proposed method. A modified IEEE 33 node case [58] with PVs was used for case 
studies. 

2.4.1 Single-Period Case Study 

In this case study, the number of PVs is 15. The modified case is shown in Figure 27. The ADMM 
algorithm settings are as follows: step size is r = 10 and dual and primal residue thresholds e1 and e2  are 
set to 0.00005 and 0.01, respectively. 
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Figure 27. Modified IEEE 33 node case with 15 PVs. 

The following two cases are designed to demonstrate the effectiveness of the proposed method in 
reducing nodal voltage deviations and network losses. The basic constant PF control of PVs is used as a 
benchmark in Case 1. 

• Case 1: Use OpenDSS to simulate the constant PF control (PF = 0.95) of PVs. 
• Case 2: Use the proposed distributed PV control model to obtain the optimal results of PV outputs 

and pass to OpenDSS for simulation. 

The proposed ADMM-based distributed optimization algorithm converges after about eight iterations. 
The simulation results are presented in Figure 28. The voltage profile in Case 2 is closer to 1.0, which is 
the nominal voltage. Additionally, the line loss in Case 2 is much lower than in Case 1. The comparison 
results show that the proposed method can effectively reduce the voltage deviations and network loss. 

  

(a)                                                                                                          (b) 

 

(c) 

Figure 28. Comparison of (a) nodal voltages, (b) network losses, and (c) reactive power output of PVs. 
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2.4.2 Time-Series Simulation 

To mimic the online applications, the proposed distributed algorithm runs every minute to control the PV 
inverters for voltage regulation and loss reduction. As shown in Figure 29, for every 1 min, an ADMM-
based distributed optimal PV control algorithm is implemented to optimize the active/reactive power 
output of the PVs to minimize the network losses while respecting the voltage limits. Then the results are 
passed to OpenDSS for simulation. 

 
Figure 29. Time-series distributed optimal PV control in distribution networks. 

A modified IEEE 33 node case with 3 PVs: The maximum power output of PV is set to 50% of the nodal 
load. The voltage range is set to [0.95, 1.05] p.u. ADMM parameters: step size r = 14, and stopping 
criteria: e1 and e2 are 0.001 and 0.04, respectively. Simulation time period: from 11 a.m. to 3 p.m. with 
1 min resolution. Simulation software: MATLAB + OpenDSS.  

The following two cases were studied: 

• Case 1: Basic PV control with constant PF 0.95 (OpenDSS) and 
• Case 2: Distributed optimal PV control (MATLAB + OpenDSS). 

The simulation results (Figures 30–35) demonstrate that the proposed distributed algorithm can be 
implemented in online applications for real-time mitigations of voltage deviations (Figures 32–35) and 
reductions of power losses (Figure 31). 

 
Figure 30. Reactive power output of PVs. 

 
Figure 31. Total network power loss. 
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Figure 32. Nodal voltage at 12:00 p.m. 

 
Figure 33. Nodal voltage at 2:00 p.m. 

 
Figure 34. Voltage at node 11. 

 
Figure 35. Voltage at node 33. 

From this case study, it can be concluded that the proposed ADMM-based distributed PV control 
algorithm can be implemented for online applications of real-time control and optimization. It can 
effectively improve the voltage profile and reduce power losses. 

In summary, this work developed an ADMM-based distributed optimal control method for PV inverters 
for voltage regulations and network loss reductions. Through the proposed method, the coordinated and 
optimal control of PV inverters was achieved in a distributed manner by solving a small local 
optimization problem for each PV with limited information exchange. The case study demonstrated that 
the proposed method converges to the global optimal solution in comparison with the centralized 
optimization model. Additionally, the simulation results demonstrated the effectiveness of the proposed 
method in improving the voltage profile and reducing network power loss through a comparative study by 
using OpenDSS simulations. The integration of large amounts of distributed PVs poses great challenges 
to the grid operation. The developed distributed optimization and control framework provides a promising 
solution, and the proposed distributed optimal PV control method has great potential in the practical 
applications of coordinated PV control in distribution networks with many distributed PVs. Further 
distributed voltage control analysis and results are presented in Appendix A.4. 

2.5 CONTROL DEVELOPMENT 

Figure 36 illustrates the data flows within the control system architecture. The system comprises a single 
element that implements the control logic.  
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Figure 36. Control system architecture data flows. 

This element receives data that relate output power from the PV unit, forecasts for solar irradiance and 
outdoor air temperature, zone temperatures relevant to the HVAC units being controlled, user-specified 
temperature set points in those zones, and the current condition (i.e., on or off) of the HVAC equipment. 
The data are supplied at a rate commensurate with the control period. Hence, if a 10 min control period is 
used, then these data streams will be sampled by the control at least once in every 10 min period. In 
practice, more frequent sampling might be necessary to smooth noise, estimate model parameters, or 
perform other data-processing tasks needed to support the primary function of the control. At the end of 
each control period, the control sends actuation commands to the HVAC units as is determined necessary 
by the control logic acting in response to its most recently received data. 

The controller is a Python implementation that will 
ultimately be deployed on a cloud platform. The 
controller will then query data from the relevant 
endpoints and assign control decisions though a web 
application programming interface (API). The system 
architecture will be deployed as illustrated in 
Figure 37. Connections between subsystems will be 
wireless using site Wi-Fi unless otherwise required. 
Prospective cloud platforms include Amazon Web 
Services (AWS) EC2 web service. This widely used 
service has a reliable interface in the boto3 Python 
library and would be sufficient for the control 
deployment.  

There are two endpoint classes for the system: controllable endpoints and data-gathering endpoints. 
Controllable endpoints relay state information and actuate the control decisions made by the controller. 
These include devices with controllable loads, such as HVAC units. Data-gathering endpoints will relay 
necessary data points for the control decisions, such as solar weather forecasts. Current project 
requirements include the use of commercial thermostats for the control of the HVAC loads and querying 
building state. Candidate hardware includes Nest and Ecobee thermostats. These products are currently 
being evaluated for project suitability. 

 
Figure 37. System architecture for deployment. 
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The overall system activity is illustrated in Figure 38. 
At the start of a control period, data will be queried 
and fed to the controller. The optimization will run 
and output the optimal control for the control period. 
At the start of the next control period, the process will 
be repeated. Data will be queried more frequently 
within control periods to ensure that sufficient data 
exist to compute the control decision and that 
decisions are made on as recent data as possible. 

The primary components internal to the control 
algorithm box are shown in Figure 39. All data 
received from the outside world are stored for use in 
the online construction of models that will be used for 
forecasting. These forecasts are an essential part 
of the optimization procedure that selects the best 
choice of actuation commands. There are two 
forecasts essential for the control’s operation. The 
first is a PV forecast, which is constructed from 
current and prior PV output data and the solar 
irradiance forecast. More details about the PV 
power forecast are presented in Appendix A.6. 
The second is a forecast of building temperature, 
which is constructed by using the same model 
used during system design but with parameters 
estimated from historical temperature, set point, 
and actuation data. More details about the 
building model parameters estimation are 
presented in Appendix A.5. The models used to 
generate these forecasts are integrated into a 
whole system model, and the optimization 
procedure explores the effects of specific actuation choices on the desirability of the forecasted system 
behavior. Desirability in this case is a weighted measure of the difference between power consumed by 
the collective HVAC units and power supplied by the PV array and deviation of actual room temperatures 
from end user set points. 

In the field-testing demonstration (Section 2.6), the control algorithm resides on a single computer 
system. The thermostats reside physically adjacent to the relevant HVAC units and provide data to the 
control system computer via a wireless network or a cloud-based data repository. The latter is attractive 
due to the availability of commercial thermostat systems that provide the necessary telemetry data and 
actuation capabilities via a cloud-based interface. The PV array could provide data directly via a wired or 
wireless connection to a control computer that is physically near or via a cloud-based data repository. 

The team developed a distribution feeder simulation platform in OpenDSS and designed an adaptive 
optimal control strategy in MATLAB (later in Python) to make HVAC loads track PV generation. There 
is a need to develop a co-simulation tool to show the line voltage and tap change differences after 
applying the adaptive control of HVAC loads. To address this, the team used the A Discrete Event 
System simulator (ADEVS) interface, which was previously developed at ORNL, to interact between 
MATLAB and OpenDSS, as shown in Figure 40. In contrast to existing techniques, ADEVS offers a 
comprehensive and accurate way of setting up the co-simulation environment. ADEVS offers friendly 
interfaces with MATLAB and OpenDSS so that users do not need to configure detailed settings. 

 
Figure 38. System activity. 

 
Figure 39. Primary logical components of the 

control algorithm. 
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Specifically, control decisions obtained in MATLAB will be passed to actual load buses in OpenDSS, 
which enables the team to see real-time changes in-line voltage and tap change. 

 
Figure 40. Co-simulation architecture. 

Next, the team provided its initial investigation about the control system field testing and deployment. 
With the ultimate goal of implementing the controller inside a physical building, the following steps were 
followed to move toward this goal. 

1. Implement the controller as deployable code. 
2. Simulate and stress-test the system. 
3. Install on appropriate hardware. 
4. Install hardware in the building. 

2.5.1 Control System Testing 

The plan is for the control algorithm to be implemented as a Python application. Once the application is 
constructed, the code will be packaged in a virtual machine and tested by using the discrete event system 
simulator ADEVS, which allows production code to be simulated and tested by using a simulated 
building model and virtual HVAC equipment. This testing regimen allows the response of the application 
to stresses, such as a communications disruption and unexpected environmental changes, to be monitored. 
The results will be used for debugging and refinement. After a sufficient number of hours has been 
simulated to ensure application reliability, the code will be ready to be packaged on hardware.  

2.5.2 Control System Hardware 

The hardware that must be considered for the deployment will run the control algorithm and gather model 
inputs and the thermostats that will relay commands and data between the HVAC rooftop unit (RTUs) 
and the control. Currently, the control will be implemented on an Intel NUC single-board computer. The 
NUC will have sufficient processing power to solve the optimization problem required by the controller. 
The thermostats used to actuate the RTUs, and control temperature set points will be commercial-grade 
smart thermostats, such as the Nest or Ecobee. These thermostats have Wi-Fi access and a RESTful API, 
simplifying data gathering and potentially control actuation. 
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2.5.3 Simulation and Stress Testing 

The software code is packaged in a virtual machine and tested by using the discrete-event system 
simulator ADEVS. ADEVS allows production code to be simulated and tested by using a simulated 
building model and virtual HVAC equipment. This testing regimen allows the application responses to 
stresses, such as communication disruption and environmental changes, to be monitored. The results can 
be used for debugging and further algorithm refinement. After sufficient runs were simulated to ensure 
application reliability, the code was packaged on hardware. 

2.5.4 Field Evaluation 

The control application was installed and tested across several test sites. The first site was a gymnasium in 
Fountain City, Tennessee. The gymnasium has four 10 ton HVAC units and two 7.5 ton HVAC units that 
can be controlled. Solar power measurements will be taken from the solar power banks at the ORNL 
campus. Virtually linking these two components allows sufficient capacity to effectively test the PV-
following goal of the control. Because the components exist on disparate physical locations, 
communications will be required to travel over the internet. This necessitates the use of cloud data 
storage, such as that provided by AWS. 

Leveraging its simulation-based testing technology, the team aimed to couple building simulation models 
that simulated the physical environment and HVAC equipment via control software that incorporates the 
PV signal, mixed-integer optimization algorithm, and control logic. The goal was to demonstrate a testing 
platform that tests the operational software and its connectivity to the buildings as it will be deployed in 
the field. By doing so, the team was able to accumulate a significant numbers of testing hours for the 
operational software and test the scalability of the algorithm without a need for costly hardware 
deployments. The overall test case is illustrated in Figure 41. 

 
Figure 41. Simulation-based testing components for a fleet of TCLs. 

2.5.5 Adaptive Building Load Control 

Two control methods were developed in this project: a is model-based method and a model-free method. 
Only the model-based predictive control is presented in this report because it was tested in the field. The 
model-free control (MFC) was only tested in a simulation environment, and it is presented in Appendix 
A.7.  

Traditional thermostat (dead band) on/off control is the basic/baseline control to be compared with the 
team’s proposed adaptive optimal control. The team started by describing the HVAC model used in this 
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work. The system model was proposed in Gwerder [59] and employed in Ma [60]. The following example 
involves a continuous-time linear time-invariant system based on the dynamics of the room-temperature, 
interior-wall surface temperature and the exterior-wall core temperature. 

 

(17) 

The parameters are defined in Table 3. 

Table 3. HVAC model parameter definitions. 

Variables Definition 
t1 Room air temperature (°F) 
t2 Interior-wall surface temperature (°F) 
t3 Exterior-wall core temperature (°F) 
uh Heating power (≥0) (kW) 
uc Cooling power (≤0) (kW) 
δ1 Outside air temperature (°F) 
δ2 Solar radiation (kW) 
δ3 Internal heat sources (kW) 

 

All the other variables are treated as constants and estimated as described previously. 

The system states are the room air temperature t1, interior wall surface temperature t2, and exterior wall 
core temperature t3. The control signals uh and uc represent heating and cooling power, and they can be 
combined as one variable, u = uh + uc, because heating and cooling are not simultaneous. Hence, the 
thermal model for each individual building is given in the state-space form as: 

 . (18) 

This section provides only a summer cooling case. State-space matrices A, B, and G can be obtained for 
any given building, and disturbance V is recorded for that specific location and time. 

This study focused on the summer cooling case. All the modeling and control technologies will also hold 
for the winter heating scenario. For summer cooling, the chosen set point was 26°C, and a ±2°C comfort 
band was allowed. To make the total power consumption track the available power generation from solar 
panel, the controller had the freedom to fluctuate temperature inside this comfort band. 

The team considered the problem in which indoor temperature t1 is required to remain within certain 
bounds of a constant dead band in the presence of the disturbance vector V. The goal was to minimize the 
error e to keep the temperature t1 close to the desired value. The total control inputs were also required to 
follow given PV generation PPV signal, that is: 
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  (19) 

where Ns denotes total number of HVAC systems. Thus, the objective was to find for the building system, 
the M time step control sequences , where  M is an integer, 

, and  is the sampling period; and corresponding state sequence  and error 
sequence . The difference between total control signal and PV signal is denoted for each 
time step k as: 

 . (20) 

The difference between total control signal and PV signal were considered together with state deviation: 

  (21) 

where Np represents the prediction horizon with Q ≥ 0, R > 0 being compatible dimensional matrices. 
Accordingly, uj (k) means control action taken for jth building at kth time interval. 

Furthermore, the team intends to use as little power as we can to save energy. So, they consider the 
control inputs as a cost in the cost function: 

  (22) 

where Uk aligns control actions for all the buildings at time step k in a vector. 

The team has both states and control inputs constraints in this problem. Because they have three states for 

each building, they set   

Then for the control input,  Here, 0 means off, and 1 means 1 kW in the model. After defining 
constraints for states and inputs of each building, they can be easily aggregated for multiple buildings. 
Therefore: 

  (23) 

Additionally, the team has one more regulation requirement for Usum in Eq. (19).  

Obviously, this is a linear quadratic programming problem that can be solved by any commercial solver. 

The simulation results are for 45 buildings. In Figures 42–45, the left-hand side in each figure depicts the 
performance by using the proposed augmented optimal control technique. The right-hand side represents 
that of traditional control. Because the objective is to track the PV generation without deviating indoor 
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temperature out of a bound, both variables are key to the design and are provided in Figures 42–45. 
Extremely good tracking results are obtained in Figure 44(a) during most of the simulation intervals. 
After comparing the sum of control signal with tracking reference (Figure 45), the team noticed that the 
tracking difference for the model predictive control (MPC) technique usually falls below 1 kW. This 
indicates a huge improvement over the traditional optimal control. However, the tracking performance 
disappeared at the end of the simulation. Figure 43(a) shows that the problem is related to control input 
saturation. One potential reason for this issue is that the number of buildings is incompatible with the 
given PV generation. In other words, it becomes infeasible to use some number of buildings to track a 
given solar PV profile. Hence, a scenario was set up in which solar PV tracking is the top priority. A 
relaxed optimization problem is formed by removing the temperature constraints temporarily when 
optimization problems run into infeasible issues. The tracking performance is improved, as shown in 
Figure 44. 

 
 (a) (b) 

Figure 42. Comparison of indoor temperatures for 45 buildings by using (a) MPC and (b) traditional control. 

 
 (a) (b) 

Figure 43. Comparison of control signals for (a) incremental control signal (fourth state) and (b) by using 
traditional control. 
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 (a) (b) 

Figure 44. Comparison of tracking performance by using (a) MPC and (b) traditional control. 

 
 (a) (b) 

Figure 45. Comparison of battery usage by using (a) MPC and (b) traditional control. 

The team also considered a generic mathematical model of a WH whose temperature (t4) at time instant k 
is a function of the water temperature at the previous time instant k-1, the average hot water use, and the 
ON/OFF state of the WH at time instant k, described as: 

 𝑡!(𝑘) = 𝑡!(𝑘 − 1) + 𝜏[𝛼"# 	𝑢"#(𝑘) − 𝛽"# 	𝑊(𝑘) − 𝛾"#], (24) 

where: 

αWH is a warming effect of an ON state of WH on water temperature (1.44), 
βWH is a cooling effect of an OFF state of WH on water temperature (0.068), 
γWH is a cooling effect of activity level on temperature of WH (0.05), and 
W(k) is an average hourly hot water usage at time k. 

Similarly, this model can be written into state-space form, as in Eq. (18). Hence, multiple variables will 
be added into the formulation. For example, t4 was added into states vector X, uWH was added into control 
vector U, and W was added into disturbance vector V. 
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The effect of the ON state on WH water temperature increase is represented by α, and the heat-loss effect 
of the OFF state of the WH is modeled by β. The latter is to address the thermal leakage due to the 
difference between the water temperature in a WH and the outside temperature. The effect of the activity 
level on the WH water temperature is modeled by using γ so that as the household activity level increases, 
there is more demand for hot water. Customer comfort levels were considered, and the WH temperature 
was assumed to vary from 48 to 58°C. Here, the control signal uWH is considered a discrete ON/OFF 
variable. 

The objective function of the MPC is formulated as follows: 

 𝐽$(𝑘) = 7∑ 9𝑢%#&'((𝑡) + 𝑢%"#(𝑡):)!
%*+ − 𝑃,&(𝑘)<

′
𝑅 7∑ 9𝑢%#&'((𝑡) + 𝑢%"#(𝑡):)!

%*+ − 𝑃,&(𝑘)<, (25) 

subject to HVAC dynamics in Eq. (17), WH dynamics in Eq. (24), and 𝑥%-./(𝑘) < 𝑥%(𝑘) < 𝑥%-01(𝑘). 

The basic idea is to track the PV profile by using HVAC and WH loads without violating temperature 
constraints.  

In this report, the team first added the quantified duty cycle and energy-saving comparison for an 
aggregated 100 HVAC units. Then, they showed results with a WH by using a discrete ON/OFF control 
strategy. Although only the summer cooling case was shown, all the modeling and control technologies 
will also apply to the winter heating scenario. For summer cooling, the chosen set point was 23°C, and a 
±0.5°C comfort band was allowed. To make the total power consumption track the available power 
generation from a solar panel, the controller can fluctuate temperature inside this comfort band. A 
numerical example is provided to compare the tracking performances between basic control and adaptive 
optimal control. In the latter control strategy, the team considered a central coordinator that collects total 
PV generation and allocates energy to a group of HVACs to minimize the difference between total 
consumption and PV generation. In both simulations, 100 buildings were used, each of which is equipped 
with the identical 1R1C HVAC model. The simulation runs for 24 h with 10 min time steps. PV 
generation and weather profiles were both picked for the same day from a local station. All numerical 
simulations were coded in MATLAB (later in Python) and were solved by using Gurobi [61] (later using 
an open-source optimizer) through the YALMIP interface [62].  

The Δ𝑇ℎ and Δ𝑇c terms were chosen to be 0.5°C in the basic control, and the reference temperature was 
set to be 23°C, although the comfort band for adaptive optimal control is [22.5°C, 23.5°C]. Figures 46 and 
47 compare the duty cycle and power consumption. The team randomly pick Building 18 and noticed that 
the duty cycle and energy consumption were reduced by more than 15%. Then, to quantify the overall 
100 buildings, the team plotted the average values across all HVAC units, as shown in Figure 47. 
Numerical results indicate that the averaged duty cycle and energy consumption were reduced by 22% 
and 26%, respectively. Therefore, the team claims that the optimal coordination that uses MPC will not 
affect the life cycle or efficiency of the HVAC system. 
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 (a) (b) 

Figure 46. Duty cycle and energy consumption comparison for Building 18 for 
(a) basic control and (b) MPC. 

 
 (a) (b) 

Figure 47. Duty cycle and energy consumption comparison for average building for 
(a) basic control and (b) MPC. 

In the second part of this numerical study, the team replaced half the amount of the HVAC systems by 
WHs. A typical water usage profile is plotted in Figure 48. Then, the optimization problem was solved 
with results presented in Figures 49–53. Figure 49 shows that 50 HVAC and 50 WH loads are well 
coordinated to track the PV generation by using the proposed adaptive optimal control. Figures 50 and 51 
show that the hot water and indoor temperatures are both within the desired comfort band. Additionally, 
the corresponding control decisions shown in Figures 50 and 51 are discrete ON/OFF signals. Figures 52 
and 53 provide a detailed view of the temperature and control signals for Building 8. The water 
temperature kept dropping before time step 50 because the WH was not turned on and there was water 
use. Moreover, Figure 52 shows more power consumption than was expected after time step 100 because 
the team increased water use during the night. Then, more WH units must turn on to maintain the water 
temperature at the lower bound, as shown in Figure 50. Therefore, the obtained results are optimal for 
HVAC and WH by cross-validating the figures. Now, to ensure that the controller will not put TCL 
devices under frequent ON/OFF switching conditions, which could reduce their lifetimes, the team 
included a third cost function in the optimization formulation that adds a penalty to HVAC state 
switching and investigated the change in HVAC on/off switching based on different PV penetration 
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levels. The simulation carries the same simulation setup, which involves 100 buildings. The switching 
count adds one each time there is a state switch from ON to OFF and from OFF to ON. 

 
Figure 48. Water use profile. 

 
Figure 49. Tracking performance with 50 

HVACs and 50 WHs. 

 

 
Figure 50. Temperature and ON/OFF control signal for WHs. 
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Figure 51. Temperature and ON/OFF control signal for HVACs. 

 
Figure 52. Temperature and ON/OFF control signal for WH in Building 8. 
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Figure 53. Temperature and ON/OFF control signal for HVAC in Building 8. 

Figure 54 illustrates the daily total switching counts for each building. The team observed that HVAC 
switching has nearly doubled due to the developed adaptive control strategy compared with the basic 
thermostat-based control. However, this double switching behavior is still considered to be a reasonable 
operating condition for HVAC systems. Moreover, Figure 55 shows that the required HVAC switching 
can be reduced by increasing the number of units subscribed to provide service. On the other hand, with a 
certain number of PV penetration, we might increase the number of assigned HVAC units to avoid the 
frequent switching of each HVAC system. 

 
(a) 

 
(b) 

 
(c) 

Figure 54. Simulation results for 100 ON/OFF HVAC systems using PuLP. (a) Indoor temperature (°C), 
(b) continuous control signals (kW), and (c) tracking performance (kW). 

 



 

38 

 
(a) 

 
(b) 

Figure 55. Daily HVAC switching count with (a) 50% and (b) 30% PV penetration. 

In the presented simulation results, it was assumed that perfect forecasting can be achieved for solar PV 
generation. However, in reality, the predicted PV output power usually deviates from true values due to 
uncertainty in weather and cloud movement. Therefore, it is critical to evaluate and quantify the effect of 
PV prediction error on the tracking performance. Thus, the team considered two of the most popular types 
of prediction errors: the persistent model and the random noisy model. In the persistent model, the last PV 
measurement will stay unchanged to represent future solar PV generation values during the whole 
prediction horizon. Intuitively, the team assumed that PV generation will remain the same for a certain 
time interval that changes from 20 to 60 min in 10 min increments. The tracking performance for different 
persistence intervals is illustrated in Figure 56 with the corresponding tracking errors.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e)  (f) 

Persistence 
interval (min) 

Tracking 
error (RMSE) 

20  38.43 

30  42.04 

40  40.60 

50  43.03 

60  42.51 

Figure 56. Tracking performance for PV forecasting error by (a) 20, (b) 30, (c) 40, (d) 50, and (e) 60 min 
persistence intervals and (f) their corresponding tracking errors. 
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Subsequently, the team switched to the second scenario in which random noise is added to the original 
accurate solar PV generation. Similarly, the team investigated the tracking errors that correspond to 
different levels of noise described by the ratio between magnitudes of added random noise to the solar PV 
generation. Specifically, the noise level was increase from 10 to 50%. The corresponding tracking 
performance is illustrated in Figure 57 with the corresponding tracking errors. As expected, the tracking 
performance becomes worse with enlarged noise added to the model. However, the degradation in 
percentage is still acceptable, even with 50% random noise. This provides a promising outcome because 
the tracking performance after real deployment will not suffer from severe degradation considering large 
solar forecasting errors. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) (f) 

Noise level (%) Tracking 
error (RMSE) 

±10 38.33 

±20 39.36 

±30 40.49 

±40 43.08 

±50 44.76 

Figure 57. Tracking performance for PV forecasting error represented by (a) 10, (b) 20, (c) 30, (d) 40, and 
(e) 50% noise level and (f) their corresponding tracking errors. 

 

2.6 CONTROL DEPLOYMENT 

The dynamic models were used to develop a model-based control design environment and test bed. The 
goal was to create a formal statement of the control problem that reflects the objective: to use load control 
as a reliable, deployable technique to offset the impact of PV output variations on distribution voltage 
regulation. An iterative model-based control design process, as shown in Figure 58, coupled with test 
facilities that can be programmed with various disturbances provided a unique opportunity to explore 
control challenges in an agile software development environment. 
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Figure 58. Incremental approach to control development. 

First, the team transferred the theoretical control research to practical implementations of deployable 
code. For implementation onto hardware, the MATLAB research code was converted to Python. The 
chosen optimization interface was PICOS [63], a user-friendly interface to several conic and integer 
programming solvers, very similar to YALMIP or CVX under MATLAB. A free optimization solver 
called ZIBOPT [64] was used to solve the continuous control problem, and the enhanced Gurobi solver 
was used to solve the mixed integer programming to obtain a discrete ON/OFF control signal. 

The team developed a deployment-ready Python-based solution for performing the optimal coordination 
of TCLs. Their previous design environment included MATLAB for exploring several dimensions of 
controller performance. This control technology was implemented by using open-source software and 
solvers to perform near-real-time optimization for tracking solar PV output by using building loads and 
dispatch of control set points. Specifically, PuLP [65] was chosen as the Python optimization interface, 
and COIN-OR [66] was chosen as the free optimization solver. PuLP is a linear programming (LP) 
optimization modeler written in Python that can generate LP files and call GLPK, COIN CLP/CBC, 
CPLEX, and GUROBI to solve linear problems. COIN-OR has more than 50 application projects, 
including tools for linear programming (e.g., COIN-OR CLP), nonlinear programming (e.g., IPOPT), 
integer programming (e.g., CBC, Bcp, and COIN-OR SYMPHONY), and algebraic modeling languages 
(e.g., Coopr). Based on this new Python framework, the team reformulated its MPC problem and 
regenerated the results to calibrate the implementation. The new optimization solver is tuned for 
performance and is demonstrated to be more computationally efficient than the MATLAB-based 
implementation. On one typical i7 desktop, for 100 buildings, the team was able to compute the optimal 
scheduling for each time step in less than 0.25 s. This demonstrated the feasibility of resolving the 
optimization for online implementation. Before using this approach, the team went through all the 
existing options for solving mixed-integer quadratic programming optimization in Python to ensure that 
the open-source solution was compatible with the state-of-the-art optimization solution. The team also 
compared the new approach with the PICOS conic optimization solver interface [63], which calls the 
most popular commercial solvers, including CPLEX, GORUBI, and MOSEK. 

The new optimization solver is much more efficient than the one developed in the MATLAB platform. 
On one typical i7 desktop, for 100 HVAC systems, the team was able to compute the optimal scheduling 
for each time step within less than 0.25 s. This capability has completely resolved the optimization 
bottleneck for the online implementation. It has also enabled a fully open-source solution for this adaptive 
PV tracking problem and enabled a wide implementation of this control optimization algorithm on any 
platform. 
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MPC deployment necessitates the development of four key components: (1) temperature and state 
measurements, (2) system identification, (3) outdoor temperature and solar forecasting, and (4) MPC 
control. 

All controller components were created by using Python, and they use open-source software packages. 
Temperature and state measurements were gathered by querying customer-owned smart thermostats. 
Currently, the controller supports Ecobee thermostats and gathers the needed measurements through the 
Ecobee RESTful API. System identification was performed by a software module by using a least-squares 
regression model. Outdoor temperature and solar forecasting were performed by a module that gathers zip 
code-level data from an external source, such as Solar Underground. The module then uses autoregression 
(AR) based on previously observed data. The MPC control was calculated by using the COIN-OR open-
source solver with the PuLP interface. These modules are housed within a controller, which can be 
deployed either virtually or through a web virtual server, such as the Amazon E2. Figure 59 shows the 
system architecture. Figure 60 demonstrates the system architecture within the controller. The subsequent 
sections describe each module in more detail. The final software package comprises 2,235 lines of Python 
code, not including any additional code required to deploy the software into different environments. For 
distribution, this code will be uploaded to a public code repository, such as GitHub or GitLab. More 
details on controller deployment are presented in Appendix A.8. 

 
Figure 59. Controller infrastructure with external 

data sources. 

 
Figure 60. Internal controller architecture. 

 

2.6.1 State Measurement 

The state measurements that the MPC controller requires were taken from smart thermostats that exist 
within the resources providing the load flexibility. Current implementations support the Ecobee smart 
thermostat exclusively. Ecobee provides a RESTful API, which can be used to query the thermostat states 
and actuate the MPC controls. Ecobee also provides security for accessing the thermostats in the form of 
tokens that must be acquired before accessing the thermostat API. These tokens expire every 24 h but can 
be automatically reacquired by authorized users for up to 1 year; however, potential issues could remain 
in using the APIs that the smart thermostat vendors provide. Specifically, the flow of information is rate-
limited and dependent on a third-party server. Utilities are generally developing middleware to maintain 
reliability issues in such settings. For example, Southern Company is abstracting the vendor API by 
providing a middleware API to access the devices while managing third-party vendors. 
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2.6.2 System Identification 

Because of the relatively slow dynamics of the 
individual buildings, a least-squares regression 
was determined to provide the best trade-off 
on accuracy and computational complexity for 
the short-term forecasting that MPC requires. 
Additionally, each HVAC zone was taken as 
an individual system to be identified. Figure 
61 compares the identified state-space 
matrices and the true state-spaces used in the 
testing model. Despite inaccuracy in the 
identification of the B matrix, the effect on the 
results was minimal.  

2.6.3 Forecasting 

AR is a time series model that uses 
observations from previous time steps as input 
to a regression equation to predict the value at 
the next time step. In the deployment, this is 
taken care of by the “statsmodel” Python 
library. To reduce inaccuracy within the 
forecast and due to the relatively slow 
dynamics, for each control period, the 
disturbance is forecasted one time step 
(10 min) into the future, and that forecast is 
used for the six time steps required to be 
forecasted by the MPC. Figure 62 shows the 
effect of forecasting PV one time step into the 
future throughout the simulation run. 

2.6.4 MPC Controller 

The MPC is packaged as a separate module within the controller. It is called every control period 
(10 min) and relies on projecting building state and outdoor disturbance six time steps (1 h) into the 
future. The solver used is the COIN-OR open-source solver. 

2.6.5 Controller Workflow 

Figure 63 illustrates the workflow of the controller, starting from the initial query of the thermostats. 
Thermostats that have dropped off the network are kept in a separate list, and communication is attempted 
at regular intervals. Furthermore, all historical measurements are logged in a separate MySQL database. 

 
Figure 61. State-space model estimation via least-square 

system identification vs. true state-space model. 

 
Figure 62. Auto regression PV forecast vs. true signal. 
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Figure 63. Controller workflow. 

Predeployment testing was performed by creating a distinct model outside the controller. Although 
previous testing attempts operated under the assumption that all information was explicitly known, these 
simulations were performed by using all developed forecasting and system identification modules. Data 
were still taken from historical data files, but no information from future time steps was known at the 
control period. Moving from predeployment testing to field testing will only require functions that draw 
information from external sources to be replaced with their respective APIs. Figure 64 shows the structure 
of the experimental setup.  

 

Figure 64. Simulation-based testing experimental setup. 

The external model was constructed by taking known A, B, and G state-space models and advancing the 
model in parallel with the control. Six zones were used in this test, mimicking the planned number of 
zones in field testing. The PV signal that the adaptive control attempts to track was reduced accordingly. 
Figure 65 shows the results of the testing. With only four units, the system was able to track the PV 
relatively well. A larger amount of flexible load allows greater precision in tracking the PV signal. 
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Figure 65. Simulation-based testing PV tracking and temperature data. 

An additional test was to determine the effect of noise on the ability to effectively identify the systems in 
question. In practice, noise could be the effect of local interference at the thermostat. This was tested in 
simulation by adding noise to the incoming temperature measurements and determining the ability of the 
controller to identify the system and track the PV. The results of this testing are shown in Figures 66 
and 67, and noise within the state measurements disrupts the system identification and impedes the MPC 
ability to track the PV signal while keeping temperatures within appropriate constraints. To impede this 
disruption, sufficient fail-safes must be built into the controller to guarantee occupant comfort within 
certain bands. 

  
 (a) (b) 

Figure 66. State-space model estimation via least-square system identification with  
(a) 5% noise and (b) 10% noise. 
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 (a) (b) 

Figure 67. PV tracking and temperature measurements with 
(a) 5% noise and (b) 10% noise. 

2.6.5.1 Trial 1  

The system was installed, and summer testing is underway. The system was deployed at the Central 
Baptist Church (CBC) Family Life Center in Fountain City, Tennessee. The units being controlled consist 
of four 10 ton rooftop HVAC units that cool the basketball court and two 7.5 ton units that cool the 
racquetball courts. The layout is shown in Figure 68. Although the four 10 ton units have two-stage 
compressors, the second stage was disabled for the purposes of this study. 

 
Figure 68. Map of the six zones utilized for 

MPC testing. 

The zones are controlled by six Ecobee 3 smart thermostats mounted on the walls of the gym and 
protected by plastic enclosures (Figure 69). Thermostat actions are controlled externally through the 
controlling computer by swinging the set point 3°F above or below the current temperature, depending on 
the desired state of the unit. The unit states are evaluated at every control period of 10 min to validate—
and correct, if needed—the MPC forecasting and decisions. 

 

5 

6 
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Figure 69. Ecobee thermostat in enclosure (left) with faceplate attached (right). 

Test Setup 

The testing apparatus comprised the six thermostats and HVAC units, as well as a set of APIs and 
historical data used to inform the control. Currently, weather data for the outdoor temperature are taken 
from the OpenWeather API. AR was then used to generate a forecast for the next hour. PV data were 
taken from a set of historical data at 10 min intervals. AR was also used to generate a forecast. The 
controller has no knowledge of the future data that will be drawn from the historical data. In the future, 
the PV data will be replaced with a live PV measurement. To maintain occupant comfort, the set point for 
control was set to 71°F. The control was required to maintain a zone temperature within 3°F of the set 
point, leading to a temperature band of [68°F, 74°F]. 

Installation and Testing Process 

After the Ecobee thermostats were deployed but before the decisions from the MPC were allowed to be 
passed back to the thermostats, the temperature forecasting and ability of the controller to solve the 
presented control problem were observed. The temperature forecasting (Figure 70) provided an effective 
projection of the immediate next time step. However, this projection will deviate some as the time 
between the original forecast and the observed measurement increases. The ability of the control to solve 
the control problem is shown in Figure 71. Although there are some periods during which the control is 
unable to solve the problem, this is most likely a result of the initial state being unsuitable. Once the 
controller is allowed to enforce its control decision, the initial conditions between control periods are 
expected to stay within a range more suitable for the control throughout the course of the study. 
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Figure 70. Predicted vs. actual zone temperatures. 

 
Figure 71. PV signal and control problem 

feasibility. 

Testing Results  

Two tests were undertaken. One was a shorter test that was only 2 h. This test was undertaken to identify 
and resolve any lingering software bugs. The second was a longer test (4 h). The results of the first test 
are shown in Figure 72. In the initial testing, the building energy consumption tracked the PV trajectory 
well with some slight deviation in magnitude. The second test had slightly reduced performance tracking 
PV due to some spikes in unit operation (Figure 73). In both sets of testing, the control was able to keep 
zones within the temperature deadband. The team will continue to work to align the PV tracking more 
closely. This will primarily be done through modification to the current system identification module. 
Additionally, the team will seek to add more HVAC units to allow more granular control over the PV 
tracking. The team also plans to recruit a live PV measurement to align more closely with the envisioned 
operation of the final system. 

  
 (a) (b) 

Figure 72. (a) MPC PV tracking test #1 and (b) zone temperatures test #1. 
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 (a) (b) 

Figure 73. (a) MPC PV tracking test #2 and (b) zone temperatures test #2. 

2.6.5.2 Trial 2  

Test Setup  

The current testing apparatus comprises the six previously discussed thermostats and HVAC units and a 
set of APIs and historical data used to inform the control. Currently, weather data for outdoor temperature 
are taken from the OpenWeather API. The controller has no knowledge of the future data that will be 
drawn from the historical data. In most tests, to maintain occupant comfort, the set point for control was 
set to 71°F. The control was required to maintain a zone temperature within 3°F of this set point, leading 
to a temperature band of [68°F, 74°F]. As testing continued into the autumn months, the set point 
constraints were slightly relaxed to allow for cooler ambient temperatures. In those cases, set points were 
set to 69°F with a 4°F deadband. 

The PV profile used in each test was the same and is shown in Figure 74 

 
Figure 74. PV ref. signal.  

 
Figure 75. August 10 test. 
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Figure 76. August 12 test. 

 
Figure 77. August 16 test. 

 
Figure 78. September 14 test. 

 
Figure 79. October 12 test. 

 
Figure 80. November 1 test. 

. The actual power values can be further scaled according to any additional testing with more units. In this 
specific case, all six units were used to attempt to follow the PV. As the number of units are scaled up, the 
granularity of the control can also be increased. The RTUs are sub-metered to monitor power. However, 
due to communications difficulties, for this study, the states of the units were monitored, and power 
values were calculated by using the number of units known to be on. 

Testing Results  

At the time of writing, six tests have been undertaken at different days. Each test was 3–4 h, and the 
testing timeline was somewhat variable due to building operations. In all cases, the PV tracking was 
relatively consistent across multiple tests. The results of the six tests are shown in Figures 75–80.  
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Figure 74. PV ref. signal.  

 
Figure 75. August 10 test. 

 
Figure 76. August 12 test. 

 
Figure 77. August 16 test. 

 
Figure 78. September 14 test. 

 
Figure 79. October 12 test. 

 
Figure 80. November 1 test. 
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Much of the deviation from load shape results from inconsistency between the model used in the control 
and the actual behavior of the building. Buildings have complex and nonlinear behavior that cannot 
always be captured by the workings of a first-order resistance-capacitance (RC) model. Additionally, the 
lag time between a state change and the effect on the monitored space can result in difficulties in 
forecasting. For example, if a state change is enforced at control period one but the effect is not seen until 
control period three, then that will obfuscate the calculation of the state variables. As such, more complex 
and nonlinear models are necessary for accurate forecasting. 

The tuning parameters control the priorities of the controller. The controller must strike a balance between 
following temperature constraints, following the reference signal, and minimizing switching events. A 
careful study of these parameters might help define an equilibrium among following temperature 
constraints, following the reference signal, and minimizing switching. 

Another test was performed the following spring on the same site (i.e., the six-zone CBC Family Life 
Center in Fountain City, Tennessee). The site comprised four 10 ton RTUs in a gymnasium and two 
7.5 ton units that controlled cooling in racquetball courts. Gymnasium units are two stage; however, only 
the first stage is used for testing. This option can be set at the Ecobee thermostat. The temperature 
deadband was set to 70 ± 3°F. An additional change to the testing occurred in the system identification 
step of the optimization module. Previously, the system identification was loosely bounded, relying on the 
historical data and the least-squares regression to provide an accurate system model. This was changed to 
a more restrictive bounding problem to ensure that the model provides a conservative estimate of the 
effects of the cooling. This was done to account for overcooling and for a lag between the system state 
change and the zone temperature caused by the thermal mass. The results of the test are shown in 
Figure 81. The temperatures of the zones are show in Figure 82. For most of the test, the MPC controller 
was able to track with the PV signal with two notable exceptions. The first occurred during the first hour 
of the test when the PV signal was near zero; however, the units were activated (blue circle). This period 
was a “ramp up” period during which the controller gathered sufficient historical data. No dispatch 
occurred during this period. Therefore, the controller could not match the signal. The second point of 
interest (red circle) occurred during an abrupt change in the PV signal. Previously, the signal was either 
growing or stable; however, at that point, the PV signal decreased. The forecasting needed to catch up 
with the decrease, resulting in a lag in the signal tracking.  

  

Figure 81. PV tracking results. Figure 82. Zone temperatures. 

This can be mitigated by better forecasting. For the temperature measurements, there is one point of 
interest (blue circle). Because of imprecise system identification and the lag induced by thermal mass, the 
supervisor was required to step in to maintain temperature within the acceptable thermal bound.  
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In conclusion, the performance of the MPC was satisfactory in following the general shape of the 
reference load signals. To more fully test the MPC, more buildings and loads must be recruited to allow 
for a higher fidelity control response. Furthermore, the model used in the MPC and the forecasting must 
be refined. An MPC controller can only be as accurate as the model it uses. In the future, more complex 
models enhanced with machine learning will be able to capture some of the dynamics of large buildings. 
The software framework has demonstrated the effective deployment of control to enable the increased 
penetration of solar PVs at the feeder level. 

Uncertainty analysis for the different building components and weather forecasts is presented in 
Appendix A.9. 

3. SIGNIFICANT ACCOMPLISHMENTS AND CONCLUSIONS 

In this project, the team developed and demonstrated: (1) a detailed, simulation-driven understanding of 
the distribution-level PV integration requirements; (2) an end-to-end simulation-based design of a 
distributed control framework of loads geographically near the PV generation asset to minimize the effect 
on the distribution feeder; and (3) control technology deployment to evaluate the effectiveness and to 
perform scalability analysis at the utility scale. 

4. INVENTIONS, PATENTS, PUBLICATIONS, AND OTHER RESULTS 

4.1 PUBLICATIONS 

1. L. Bai, Y. Xue, G. Xu, J. Dong, M. Olama, and T. Kuruganti, “A Data-Driven Network Optimisation 
Approach to Coordinated Control of Distributed Photovoltaic Systems and Smart Buildings in 
Distribution Systems,” IET Energy Systems Integration, June 2021. 

2. M. Olama, J. Dong, I. Sharma, Y. Xue, and T. Kuruganti, “Frequency Analysis of Solar PV Power to 
Enable Optimal Building Load Control,” Energies, vol. 13, no. 18, Article ID 4593, Sep. 2020. 

3. J. Dong, M. Olama, T. Kuruganti, A. Melin, S. M. Djouadi, Y. Zhang, and Y. Xue, “Novel Stochastic 
Methods to Predict Short-term Solar Radiation and Photovoltaic Power,” Renewable Energy, vol. 
145, pp. 333-346, July 2019. 

4. I. Sharma, J. Dong, A. A. Malikopoulos, M. Street, J. Ostrowski, T. Kuruganti, and R. Jackson, “A 
Modeling Framework for Optimal Energy Management of a Residential Building,” Energy and 
Buildings, vol. 130, pp. 55-63, Oct. 2016. 

5. T. Wu, M. Olama, S. M. Djouadi, J. Dong, Y. Xue, and T. Kuruganti, “Signal Temporal Logic 
Control for Residential HVAC Systems to Accommodate High Solar PV Penetration,” in Proc. of the 
11th IEEE Conf. on Inn. Smart Grid Tech. (ISGT), Feb. 2020. 

6. Y. Zhang, J. Dong, T. Kuruganti, S. Shen, and Y. Xue, “Distributionally Robust Building Load 
Control to Compensate Fluctuations in Solar Power Generation,” in Proc. of the IEEE American 
Control Conference (ACC’19), July 2019. 

7. B. Telsang, M. Olama, S. Djouadi, J. Dong, and T. Kuruganti, “Stability Analysis of Model-free 
Control under Constrained Inputs for Control of Building HVAC Systems,” in Proc. of the IEEE 
American Control Conference (ACC’19), July 2019. 

8. B. Telsang, J. Dong, M. Olama, T. Kuruganti, and S. Djouadi, “Nuclear-norm-based Subspace 
Identification of Multi-Zone Building HVAC System,” in Proc. of the 3rd IEEE International 
Conference on Smart Grid and Smart Cities (ICSGSC’19), June 2019. 
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9. J. Dong, T. Kuruganti, S. M. Djouadi, M. Olama, and Y. Xue, “Privacy-Preserving Aggregation of 
Controllable Loads to Compensate Fluctuations in Solar Power,” in Proc. of the IEEE Workshop on 
the Electronic Grid (eGrid 2018), Nov. 2018. 

10. J. Dong, M. Olama, T. Kuruganti, A. Melin, J. Nutaro, C. Winstead, and Y. Xue, “Model Predictive 
Control of Building On/Off HVAC Systems to Compensate Fluctuations in Solar Power Generation,” 
in Proc. of the 9th International Conf. on Power Electronics for Distributed Generation Systems 
(PEDG2018), June 2018. (Best Paper Award) 

11. B. Telsang, M. Olama, S. Djouadi, T. Kuruganti, J. Dong, and Y. Xue, “Model-free Temperature 
Control for Building Air-conditioning Systems to Accommodate Solar Photovoltaic Energy,” in Proc. 
of the 9th International Conference on Power Electronics for Distributed Generation Systems 
(PEDG2018), Charlotte, NC, June 2018. 

12. J. Dong, Y. Xue, T. Kuruganti, M. Olama, and J. Nutaro, “Distribution Voltage Control: Current 
Status and Future Trends,” in Proc. of the 9th International Conference on Power Electronics for 
Distributed Generation Systems (PEDG2018), Charlotte, NC, June 2018. 

13. Y. Xue, M. Starke, J. Dong, M. Olama, T. Kuruganti, J. Taft, and M. Shankar, “On a Future for Smart 
Inverters with Integrated System Functions,” in Proc. of the 9th International Conference on Power 
Electronics for Distributed Generation Systems (PEDG2018), Charlotte, NC, June 2018. 

14. J. Dong, Y. Xue, T. Kuruganti, I. Sharma, J. Nutaro, M. Olama, J. M. Hill, and J. W. Bowen, 
“Operational Impacts of High Penetration Solar Power on a Real-World Distribution Feeder,” in Proc. 
of the 9th IEEE Inn. Smart Grid Tech. (ISGT), Feb. 2018. 

15. Y. Xue, I. Sharma, T. Kuruganti, J. Nutaro, J. Dong, M. Olama, and D. Fugate, “Voltage Impacts 
Analyses of Solar Photovoltaics on Distribution Load Tap Changer Operations,” in Proc. of the 49th 

North American Power Symposium, Morgantown, WV, Sep. 2017. 

16. O. Bara, M. Olama, S. Djouadi, and T. Kuruganti, “Data Driven Building Load Control for High 
Penetration of Solar Photovoltaic Generation,” in Proc. of the 49th IEEE North American Power 
Symposium, Morgantown, WV, Sep. 2017. 

17. J. Dong, S. Djouadi, T. Kuruganti, and M. Olama, “Augmented Optimal Control for Buildings under 
High Penetration of Solar Photovoltaic Generation,” in Proc. of the 2017 IEEE Conference on 
Control Technology and Applications, Aug. 2017. 

18. M. Olama, I. Sharma, T. Kuruganti, J. Dong, J. Nutaro, and Y. Xue “Spectral Analytics of Solar 
Photovoltaic Power Output for Optimal Distributed Energy Resource Utilization,” in Proc. of the 
2017 IEEE PES General Meeting, Chicago, IL, July 2017. 

19. J. Dong, M. Olama, T. Kuruganti, J. Nutaro, Y. Xue, I. Sharma, and S. Djouadi, “Adaptive Building 
Load Control to Enable High Penetration of Solar Photovoltaic Generation,” in Proc. of the 2017 
IEEE PES General Meeting, Chicago, IL, July 2017. 

20. J. Dong, T. Kuruganti, A. A. Malikopoulos, S. M. Djouadi, and L. Wang, “Home Energy 
Management based on Optimal Production Control Scheduling with Unknown Regime Switching,” 
in Proc. of the IEEE American Control Conference (ACC), May 2017. 

21. M. Olama, I. Sharma, T. Kuruganti, and D. Fugate, “Statistical Analysis of Solar PV Power 
Frequency Spectrum for Optimal Employment of Building Loads” in Proc. of the 8th IEEE 
Conference on Innovative Smart Grid Technologies (ISGT), Apr. 2017. 

22. J. Dong, T. Kuruganti, and S. M. Djouadi, “Very Short-term Photovoltaic Power Forecasting using 
Uncertain Basis Function,” in Proc. of the 51st Annual Conference on Information Sciences and 
Systems (CISS 2017), Mar. 2017. 
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23. J. Dong, A. Malikopoulos, S. M. Djouadi, and T. Kuruganti, “Application of Optimal Production 
Control theory for Home Energy Management in a Micro Grid,” in Proc. of the IEEE American 
Control Conference (ACC), July 2016. 

4.2 INVENTIONS 

1. M.M. Olama, T. Kuruganti, and J. Dong, “Spectral Analysis of Solar Photovoltaic Power Output for 
Determining Energy Storage System Capacity,” ORNL Invention Disclosure 201804283, DOE S# S-
138,954, Jan. 2019. 

2. J. Dong, M.M. Olama, T. Kuruganti, and Y. Xue, “Privacy-preserving Aggregation for Smart 
Metering: Exploiting Randomness in Solar Power Output,” ORNL Invention Disclosure 201904305, 
Jan. 2019. (Elected to be Filed for Patent) 

5. PATH FORWARD 

The team developed and deployed the open-source software for engaging the end-use load to increase 
renewable penetration at the feeder level. This technology enables the higher penetration of PV resources 
into distribution circuits and minimizes the impact on the feeder due to two-way power flows. The project 
advanced the control formulation from the technology readiness level of this technology from 3 to 7, and 
it is currently ready for adoption by utilities, building equipment manufacturers, and energy service 
companies. The team is engaging with utility partners and small business PV installers to demonstrate a 
seamless transition between the development phase, demonstration phase, and large-scale deployment 
phase consistent with the long-term objective of the funding agency of using funded research and 
development programs to promote job creation and economic prosperity within the United States. 
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APPENDIX A.  

A.1 BACKGROUND ON DISTRIBUTION SYSTEM VOLTAGE CONTROL 

The continuing cost reductions due to wide-scale solar deployments and innovative PV and power 
electronics technologies are steadily pushing PV on the path toward grid parity with other generation 
technologies. Despite the emergence of higher efficiency solar power technologies, such as concentrating 
solar power and concentrated PV, the standard standalone solar PV still asserts dominance in the solar 
market and is widely used in different scales of solar power systems, including residential houses, 
commercial buildings, and utility-scale solar farms. Utility-scale solar PV systems are currently the fastest 
growing market in overall capacity.  

A.1.1 Hardware Components of Solar PV Systems 

The needed hardware for a complete solar PV system comprises PV sources,1 power conversion, and the 
balance of system (BoS), which includes mounting, cabling, metering, switch board, interconnection 
transformer, and other mechanical and electrical accessories. More details about such systems are 
described as follows. 

1. PV Panels or Array: Today, a PV cell can comprise several different PV materials, such as 
monocrystalline silicon, polycrystalline silicon, amorphous silicon, cadmium telluride, and copper 
indium gallium selenide/sulfide [67]. These cells are often combined to produce a PV module or 
panel as a more usable product. However, the power and voltage of a single PV module is still 
relatively low and often requires increased scaling for different solar applications and grid 
interconnection voltage levels. So, multiple PV modules can be connected in series to construct a PV 
string to generate a sufficiently high voltage and avoid a voltage-boosting power stage. To reach a 
higher system power level, these strings can be further connected in parallel to form a PV array, as 
shown in Figure A-1. For utility-scale PV systems, typical system voltage design targets of 600 Vdc 
or 1,000 Vdc are used. This DC voltage is needed for power conversion and conditioning systems to 
deliver a 480 Vac three-phase output.  

2. Power Electronics Converters: The power conversion technologies for solar PV systems have been 
realized by many power electronic converter topologies, including DC-DC converters and DC-AC 
converters, also known as inverters. These conversion technologies are necessary because the solar 
PV generates DC power, which is impacted by the available solar irradiance and ambient 
temperature. This power must be converted to AC, regulated, and conditioned to be fed to the grid. 
Additionally, these power electronics converters and corresponding controllers are responsible for 
maximizing the solar array output.2 Conventional PV inverters are designed to be current-controlled 
with MPPT algorithms. The solar PV exhibits nonlinear current-voltage characteristics, and numerous 
versions MPPT algorithms [68–69] have been created to take advantage of this feature. The perturb 
and observe algorithm tends to be the most common implementation. Along with maximizing the 
output, recent developments on solar integration standards and regulations have begun to force solar 
power systems to meet grid ancillary services requirements or specific grid codes. These requirements 
have increased the demand for smart PV inverters with new control functionalities [70]. These new 
inverters provide support to the grid during normal and abnormal conditions. 

There are many different PV inverter topologies [71–73]. This section categorizes the inverter 
topologies into (1) single-phase or three-phase; (2) single power stage or multiple, usually two, power 

 
1 Actual solar cells, such as monocrystalline, polycrystalline, thin film, etc.  
2 Otherwise known as maximum power-point tracking.  



 

 

stages; (3) line-frequency, high-frequency transformer, or transformerless; and (4) two-level or 
multilevel topologies. These different inverter topologies demonstrate different technical and 
economic performances in terms of efficiency, reliability, power density, and cost.  

3. BoS: The rest of the PV system hardware components (i.e., the BoS) comprise PV panel mounting 
racks, string combiner boxes, protection devices and switchboards, interconnection transformers, 
cables, and so on.  

 
Figure A-1. Solar PV configuration from cell to array. 

A.1.2 Power Electronics Architectures for Solar PV Grid Interconnection 

Depending on the scale of PV installation, different power electronics architectures and configurations 
can be deployed for solar PV grid interconnections. The choice of centralized architecture vs. distributed 
architecture has implications for efficiency, reliability, and utilization. A distributed architecture generally 
has better solar energy utilization, whereas a centralized architecture weighs more on efficiency and 
reliability. 

1. Centralized PV Inverter with Centralized MPPT: The centralized PV inverter with a centralized 
MPPT algorithm topology is shown in Figure A-2. The entire PV array is connected to an inverter 
either directly or through a centralized DC-DC converter, as shown. This type of configuration has 
the advantages of simplicity, low cost, high efficiency, and reliability. However, because of this 
centralized scheme, one MPPT inverter control is performed over the entire PV array, compromising 
the solar power utilization performance during partial shading and PV module mismatched 
conditions. Additionally, centralized architecture suffers from poor expandability and adaptability to 
customer requirements. 

 
Figure A-2. Centralized PV inverter with centralized MPPT. 



 

 

Depending on the number of PV strings, a centralized inverter can comprise single-string inverters or 
multi-string inverters. The power rating of a single-string inverter is typically lower, and the grid 
interface is via a one-phase connection. This configuration was commonly observed in the early 
period of solar PV plant installations. Even today, large-scale solar plants mostly use configurations 
of multiple central inverters, also known as multi-string inverters. As an example, Figure A-3 
illustrates the typical layout of a solar farm interconnected to a medium-voltage grid. The PV system 
capacity can be easily expanded by adding more central inverters. 

 
Figure A-3. PV inverter configurations in a large-scale solar farm. 

2. Centralized PV Inverter with Distributed MPPT: Centralized PV inverters can also be configured 
with distributed MPPT architectures, which is achieved by multiple DC-DC converters to enable 
better solar power utilization. Four different distributed MPPT configurations are presented in 
Figures A-4 through A-7. In Figure A-4, each PV string has a dedicated DC-DC converter, which 
performs MPPT and DC voltage regulation. The PV and DC-DC converter building blocks are 
connected in parallel to increase the input current to the centralized inverter. A transformer is used to 
boost the voltage to the appropriate grid tie voltage. The utility-scale PV inverter topology is shifting 
toward the use of a modular cascaded structure. This type of configuration provides better harmonic 
spectra and facilitates lightweight filtering components [70, 74–76]. Figure A-5 shows a cascaded 
DC-DC converter connection of PV modules. Similar to the first topology, each PV string has a 
dedicated DC-DC converter. However, the PV and converter building blocks are connected in series 
to create a high-voltage DC link. This feature eliminates the need for a heavy and bulky line-
frequency transformer for conversion to medium grid tie voltage. A cascaded H-bridge configuration 
is shown in Figure A-6. Similar to the first two configurations, each PV string has a dedicated DC-
DC converter. However, single-phase H-bridge inverters are coupled in series and in parallel 
configurations to boost the voltage and create the three-phase configuration for grid connection. Thus, 
similar to the second configuration, a line-frequency transformer is not required. The first-stage 
DC-DC converters with high voltage insulation can achieve the voltage boost and MPPT for the 
segmented PV arrays.  



 

 

 
Figure A-4. Centralized inverter with distributed MPPT at string level with low-voltage DC link. 

 
Figure A-5. Centralized inverter with medium-voltage DC transmission configuration [70]. 



 

 

 
Figure A-6. Centralized PV inverter with cascaded H-bridge configuration [75]. 

  
Figure A-7. Centralized PV inverter with differential power processing (DPP) configurations:  

voltage DPP (left) and current DPP (right). 

The DPP configuration was introduced to reduce the capacity of employed DC-DC converters and 
hence improve the efficiency and performance of the PV system [77–78]. The system configurations 
for DDP are shown in Figure A-7. A basic operating challenge with PV strings is mismatch in MPP 
current. In current DPP configurations, the DPP converters act as controllable current sources to 
allow series PV panels to operate at independent current levels. Thus, every local MPP can be 
reached. On the other hand, for the multistring PV system, a DPP converter can be added between 
every adjacent pair of strings to process the differential power.  

3. Micro PV Inverter (“AC PV Module”): The AC-module inverter integrates the inverter and PV 
module into a single electrical device [79–80]. Because the AC module inverter is attached to only 
one PV panel, mismatch losses between PV modules are not present and additional DC wiring is not 
required. This reduces the associated risk of electric arc and fire in DC wiring. This configuration is 
also modular, delivering a “plug and play” concept and providing an integration path for PV system 
enlargement [81–82]. 

MPPT is also performed at each PV panel, reducing the impact of cloud cover transients across a 
large PV system. Thus, the micro-PV inverter configuration is usually implemented in the distributed 
scenario, as shown in Figure A-8. The AC module inverter still has several drawbacks. First, the 



 

 

module-integrated inverter needs more complex circuit topologies to achieve high-voltage 
amplification. 

 
Figure A-8. Micro PV inverter. 

This results in a low-converter efficiency and higher cost per watt capital investment. Additionally, 
the packaging of the inverter and PV module to one electrical device decreases overall system 
lifetime because a failure in the inverter or PV module requires the replacement of both. Today’s 
inverter technology has an expected lifetime of about 10 years, which is far less than the lifetime of 
PV panels (i.e., approximately 25 years).  

4. Submodule Integrated Converter: To further maximize the solar power utilization, power converters 
can be integrated at the submodule level, as shown in Figure A-9, with two different configurations 
[83–84]. Individual MPPT can be achieved for different groups of solar cells within one solar PV 
panel so that the global MPP can be tracked, even when the panel is partially shaded. 

 
(a) Parallel connection. 

 

 
(b) Series connection. 

Figure A-9. Submodule integrated converters. 

 



 

 

A.1.3 Distribution System Voltage Control  

Electric distribution systems refer to the portions of medium- and low-voltage electric power grids. In 
North America, standard medium voltages range from 600 V to 69 kV, and low voltages are any voltage 
below 600 V. Typically, residential houses are connected to low-voltage lines, 120 V single-phase or 
240 V split-phase; commercial buildings are connected to three-phase 480 or 690 V. These low-voltage 
loads are called secondary customers from the utility perspective. The lower end of medium-voltage 
distribution grids serves the primary customers at 4.16–13.8 kV, and the higher end of medium-voltage 
distribution grids serves subtransmission customers at 26–69 kV. 

Different distribution system architectures are adopted in different areas and different countries. The 
choice of distribution architectures has cost and reliability concerns [85]. The subtransmission and 
primary distribution systems can generally be designed in looped, radial, meshed (also called 
interconnected or spot network), or T-type structures. In the United States, two primary distribution 
system architectures are commonly used [86]. The radial distribution structure is typically used in rural 
areas, whereas the meshed network structure is more deployed in densely populated city areas. The radial 
distribution feeder circuit, an example of which is shown in Figure A-10, traditionally has only one source 
from the distribution substation and no switch device linking that circuit with another, thus suffering from 
reliability concerns if a fault occurs near the substation and power quality issues at the feeder end due to 
the voltage drop or power loss of the long feeder line. This structure has a historic root and it remains the 
majority in the country. In high-load city areas, meshed secondary networks [87], as shown in 
Figure A-11, are installed, which comprise multiple distribution voltage-level feeders, each serving 
several underground transformers installed in vaults; the low-voltage secondaries of the transformers are 
interconnected, and customers are served from these interconnected secondaries. This type of architecture 
provides a very high degree of service reliability to the customers; several components can be out of 
service at any one time without causing a loss of service. However, higher construction cost has limited 
its expansion. 

 
 

Figure A-10. Typical radial  
distribution system [86]. 

Figure A-11. Secondary grid network  
distribution system [87]. 

 



 

 

Recent extreme natural events, such as superstorm Sandy, have called for grid resilience, which requires 
distribution systems capable of fast restoration and self-healing. The technology advances of distributed 
intelligence and distribution automation [88] enable these capabilities, which can change the radial 
distribution structure dynamically to improve reliability and resilience by using devices such as 
sectionalizers, reclosers, power flow controllers, and fault location/isolation/service restoration or fault 
detection/isolation/restoration. 

Distribution utilities are obligated to guarantee power quality to customers. The term power quality is 
associated with the electromagnetic phenomena, such as: (1) transients, (2) short-duration variations, 
(3) long-duration variations, (4) voltage unbalance, (5) waveform distortion, (6) voltage fluctuations, and 
(7) power frequency variations. The voltage control devices are primarily deployed to handle type 3 
disturbances, particularly preventing undervoltage and overvoltage via voltage regulation at fundamental 
frequency. This problem is also referred to as the nodal voltage profile or maintaining viable voltage level 
and is investigated below. Another type of voltage stability problem is voltage collapse, which 
investigates the overloading point (i.e., bifurcation) at which the voltage will collapse.  

To improve nodal voltage profiles in medium-voltage distribution networks, different voltage control 
devices are used by distribution utilities. Substation transformers are typically equipped with on-load tap 
changers (OLTCs). Step voltage regulators (SVRs) can also be installed in the middle of the feeder to 
boost the voltage by a transformer with LTCs. Voltage drops can also be caused by the loads that absorb 
large reactive power (i.e., lagging PF). Reactive power compensation devices, such as fixed or adjustable 
capacitor banks—and various power electronics-based compensators, such as static VAR compensators 
(SVCs) and static synchronous compensators (STATCOMs)—are installed in the substation and along the 
feeders or close to particular loads. In low-voltage distribution networks, direct voltage-control devices 
are seldom present traditionally, as illustrated in Figure A-12. In recent years, smart inverters and various 
grid edge technologies have evolved in the low-voltage distribution system to provide grid-supporting 
ancillary functions. However, these new voltage-control devices present impacts on the operation of 
conventional voltage-control devices, and they must coordinate to maintain proper voltage profiles and 
reduce system loss. 

 
Figure A-12. Distribution system voltage regulation zones [156]. 

The voltage regulation problem is traditionally approached with a hierarchical structure: offline 
optimization and online control, as shown in Figure A-13. The offline optimization problem defines the 
optimal settings for the online voltage control reference and the optimal sequences of connection and 
disconnection of the capacitors. This process is typically performed 1 day ahead based on 24 h load 
forecasting. The online control problem targets the control of OLTCs via closed-loop regulation to 
maintain the voltage amplitude at the reference value. The controlled voltage can be the transformer 
secondary voltage or the estimated voltage at the feeder end by the line drop compensator.  



 

 

 

Figure A-13. Conventional voltage and reactive power control in distribution systems [93]. 

The LTC is placed on the substation transformer and operates on a three-phase basis, whereas SVRs 
regulate individual phases and can be placed flexibly on any feeder location where required (e.g., at 
feeder bus or head or in the middle of a long feeder line). A voltage regulator comprises an 
autotransformer, LTC, and voltage regulator control. A voltage change is obtained by changing the series 
winding taps of the autotransformer. The position of the tap is determined by a line drop compensator. 
Standard step regulators contain a reversing switch, enabling a ±10% regulator range for type A SVRs 
and +10% and -8.3% for type B SVRs, usually in 33 steps. This amounts to a 5/8% change per step, or 
0.75 V change per step, on a 120 V base. The SVR control circuit requires the following settings. 

• Voltage level: Desired voltage to be held at the load center, typically between 114 and 126 V. 

• Voltage bandwidth: The allowed variance of the load center voltage from the set voltage level. 

• Time delay: The length of time that a higher or lower operation is called for before the actual 
execution of the command. This setting is intentional to avoid unnecessary accelerated wear and tear 
of the tap changer for short-duration voltage excursion outside the bandwidth caused by events 
related to motor starting. It is typically set in the range of 30 to 90 s. 

• Line drop compensator: Set to compensate for the voltage drop between the regulator and the load 
center. The settings consist of R and X settings in volts corresponding to the equivalent impedance 
between the regulator and load center when the line is carrying the current transformer’s rated 
primary current. 

Smart inverters can provide autonomous Volt/VAR control or PF control [89] to mitigate local voltage 
fluctuations and voltage rise issues due to solar power injection at the point of interconnection. However, 
a market incentive mechanism has yet to be established for nonutility-supplied reactive power. 
Additionally, the provision of reactive power capabilities normally requires excess capacity on the 
inverter and thus oversizing hardware design or active power production curtailing. For smart inverters 
that provide additional voltage support, communications and standardized control functions are required 
by the IEEE standards and specific grid codes, which are reviewed in the next section, to ensure that these 
functions are coordinated with distribution system regular voltage control operations and are enabled only 
when appropriated to do so [90]. Figure A-14 shows a control architecture and configuration [91] for the 
OLTC controller to consider the voltage at the feeder end by either estimate or remote monitoring. 



 

 

 

Figure A-14. Control architecture with and without remote 
monitoring [91]. 

The voltage control technologies in distribution systems are continually evolving. In the 1970s and early 
2000s, with the energy and electricity crisis concerns, utilities looked at conservation voltage reduction 
(CVR) to increase distribution system efficiency and conserve energy. Over the years of technology 
improvement and communication establishment at most distribution equipment, the focus of minimizing 
energy consumption shifted to controlling the voltage and volt-ampere-reactive power levels (i.e., VAR) 
in near-real time. This is known as voltage VAR optimization (VVO). There are two different VVO control 
structures: centralized and decentralized. Centralized VVO approaches use LTC transformers, voltage 
regulators, and fixed/switched capacitor banks to control voltage and reactive power flow. There are three 
different centralized VVO approaches [92]: supervisory control and data acquisition (SCADA) rule-based 
VVO, DMS model-driven VVO, and hybrid VVO. 

The rule-based system shown in Figure A-15 uses a VVO processor in conjunction with a remote 
terminal unit to control the automated devices. The design can incorporate the voltage of the feeder end 
and change the tap position or capacitor to on or off based on a set of rules, programmed voltage, and 
VAR thresholds to achieve minimized feeder losses, minimized energy consumption, minimized power 
demand, or any combination of these. The communications between the VVO processor and line devices 
can be via SCADA or cellar phone.  

 

Figure A-15. The SCADA rule-based VVO approach 
[94]. 

The model-driven VVO approach shown in Figure A-16 takes advantage of the most information and 
tools available in a DMS—including near-real-time network configuration, advanced metering 
infrastructure, outage management system, geographic information system (GIS), and customer 
information system—to develop and execute an optimal switching plan for all the controllable devices to 
reach a desired result. The core engine is the IVVC, which runs an online power flow analysis and 



 

 

optimization to create a VVO switching plan. The hybrid VVO approach emerged more recently, using 
autoadaptive controllers in the field devices or at the system level to respond to changing conditions. 
These autoadaptive controllers are based on either closed-loop control with real-time voltage 
measurement or historical behavioral patterns to optimize the power flow based on the rules provided by 
the utility. Additionally, decentralized or agent-based VVO schemes [95–96] have attracted attention to 
tackle the control scalability. More detailed reviews will be conducted in next quarter. 

 

Figure A-16. The DMS model-driven IVVC scheme [94]. 

Distribution voltage control is usually associated with three objectives: power quality, energy efficiency 
(i.e., reducing power loss and/or peak load), and voltage stability, also known as voltage instability or 
collapse. In this report, a fourth-dimension objective is added, extending the lifetime of voltage regulation 
devices, such as SVRs and distribution transformers with OLTCs. 

Various control architectures for the distribution nodal voltage control to ensure power quality to end 
customers were reviewed previously in this section. The term power quality refers to a wide variety of 
electromagnetic phenomena that characterize the voltage and current at a given time and at a given 
location in the power system. Among those disturbances, the nodal voltage controls mainly target 
preventing undervoltages and overvoltages via voltage regulation at fundamental frequency [97]. For 
harmonic-related power quality issues, various passive or active power filters (APFs) can be installed to 
compensate voltage harmonic distortions due to nearby nonlinear loads. Within the APF family, the 
unified power quality conditioner (UPQC), which integrates shunt compensation and series compensation 
in one system, is employed in a power distribution system, whereas the unified power flow controller 
(UPFC) is employed in a power transmission system. Further discussion on the details of UPQCs is 
beyond the scope of this report. However, a comprehensive overview of different UPQC power 
electronics converter topologies and system configurations can be found in the literature [98–99]. 

Traditionally, electrical utility companies have owned the voltage regulation equipment, such as 
distribution transformers with OLTCs, SVRs, and fixed or switching capacitor banks, which are installed 
only in the medium-voltage distribution grid. Centralized control schemes are typically adopted in 
practice by the utility company. In recent years with the emergence of residential PV systems (a few 
kilowatts), commercial building solar PV systems (a few hundred kilowatts), and utility-scale megawatt 
solar farms, there has been demand for various grid services provided by solar PV inverters in addition to 
their primary energy feeding functions. Thus, new voltage control devices are present in both 
medium-voltage distribution zones (typically a MW-scale solar farm connected to a 4.16–69 kV grid) and 



 

 

low-voltage distribution zones (residential PV at single-phase 120 V / 240 V and commercial building PV 
at three-phase 480 V). Usually, the voltage control problem and reactive power control problem [100] are 
highly coupled with reactive power compensation to improve the load PF and in the meantime support the 
voltage. 

As forecasted in the literature [70, 101–102], solar PV inverters are being staged into smart inverters. 
Relevant IEEE standard 1547(2018) requires smart control functionalities provided by inverter-based 
DERs, such as solar PV and energy storage systems. The DER is required to provide voltage regulation 
capability by changes of active power, and this active participation in voltage regulation shall be approved 
by the area electric power system (i.e., the distribution utility operator). Specifically, the DER shall be 
capable of activating any of the following reactive power control modes individually [103]: 

• adjustable constant PF mode, 
• voltage-reactive power (volt-VAR) mode, 
• active power-reactive power mode (watt-VAR), and 
• adjustable constant reactive power mode. 

In addition to reactive power control, the DER is also required to provide a programmable voltage 
regulation capability by changes of active power [103] (voltage-real power [volt-watt] mode). 

Because of the emerging voltage control devices on the customer side and their distributed nature, 
research interest in decentralized voltage and reactive power control philosophy [93] has naturally spiked. 
However, the operation impact of new voltage control devices must be studied first. 

The effects of voltage control by the DER and the interactions between the DER and the utility voltage 
regulation devices (e.g., capacitor banks, voltage regulators, and LTCs) were investigated [90, 104–105] 
on computer simulation bases. Without proper coordination by distribution network planners and 
operators, the voltage control provided by the DER might introduce adverse effects, including control 
interactions, operational conflicts, steady-state voltage variations, and oscillations. In the paper by 
Ranamuka et al. [90], a sample medium-voltage distribution feeder system, shown in Figure A-17, was 
simulated and analyzed with two feeder circuit configurations and four case studies. It was observed that 
more tap operations are required in SVRs to correct the voltage according to their voltage reference value. 
This is because the DG voltage control mode operation and associated voltage reference values of the DG 
units tend to damp the voltage correction, which could lead to unnecessary capacitor bank switching 
operations and exhausted tap operations. Also, the tap operations of voltage regulators do not significantly 
affect the remote end bus voltage, mainly due to the fast voltage control action of the inverter-based DG. 
The total number of conflicting operations in voltage regulators and capacitor banks are also reported in 
the paper, as replicated in Table A-1, based on 1 year 10 min time resolution simulations. These 
simulation results highlight the DG and voltage-regulating device interactions and their possible adverse 
effects under different system operational conditions.  

 



 

 

 
Figure A-17. Topology of a realistic MV distribution feeder system in New South Wales, Australia [90]. 

Table A-1. Number of conflicting operations associated with DG voltage-regulating device interactions, as 
found in Ranamuka et al. [90] 

 
 

A coordinated voltage control strategy or volt-VAR optimization thus becomes vital to maintain the 
desired voltage at any point along the feeder for modern distribution system operations. This is typically 
achieved centrally by using a distribution automation system (e.g., SCADA system) or advanced DMS 
(ADMS). VVO, as a key function of ADMS, is designed to optimize the voltage and reactive power flow 
in the distribution network by using all the possible control devices. The objective function is typically to 
minimize the system power loss, energy consumption, or a combination of both, and the constraints are 
the maximum current values in feeder lines or transformers and keeping all bus voltages within a range. 
Besides the traditional standalone volt-VAR controllers and rule-based VVO, the IVVC is the most 
advanced VVO approach. The IVVC, also known as the DMS model-based VVO approach, uses real-time 



 

 

measurements, a distribution system model, and an online power flow computation function, as well as an 
optimization engine to calculate the optimal set of control actions for all control equipment and then send 
the control set points to the local controllers embedded in each piece of control equipment via SCADA or 
a communication link.  

Optimization algorithms include analytical methods, numerical methods, heuristic methods, and AI 
methods. Numerical VVO methods use mixed-integer linear programming, mixed-integer quadratic 
constrained programming, sequential convex programming, MPC, dynamic programming, and ordinal 
optimization techniques. Most heuristic methods found in the literature are based on evolutionary 
optimization algorithms, including genetic algorithms, particle swarm optimization, the teaching-learning 
algorithm, simulated annealing, ant colony optimization, tabu search, the shuffled frog leaping algorithm, 
memetic algorithms, honeybee mating optimization, the bacterial foraging optimization algorithm, bee 
swarm optimization, the gravitational search algorithm, and so on. The AI methods include neural 
networks, adaptive neuro-fuzzy inference, and multiagent systems. A detailed review of various VVO 
methods can be found in Satsangi and Kumbhar [106]. 

Flexible AC transmission systems (FACTS) have been deployed in the transmission system for voltage 
control and reactive power compensation, such as SVCs using a thyristor-controlled reactor (TCR), or 
thyristor-switched capacitors and UPFCs. There is a trend to promote similar control functions using 
newer self-commutated semiconductor switching devices at the distribution level to create distribution 
static synchronous compensators (D-STATCOM) and UPQC (as discussed previously) and to address 
voltage control and other power quality issues. More detail on D-STATCOM research efforts are found in 
the literature [96, 107–109]. Furthermore, there is a bold vision to achieve a flat voltage profile across the 
entire distribution feeder circuit without communications. One concept is to add more capacitors along 
the feeder and allow the capacitor banks to be the primary voltage-regulating devices while the LTCs of 
voltage regulators or distribution transformers address only emergency or dramatic voltage changes. 

Buildings consume two-thirds of the electricity produced in the United States, and a significant portion of 
the building load is dispatchable, making them responsive to electrical grid needs as an effective 
demand-side management tool. Direct load control has been adopted by the utilities to manage peak time 
demand. More recently, various demand-response programs were implemented to encourage load 
curtailment by the time of use with financial incentives. However, these methods would not solve the 
voltage problem investigated in this report at the minute timescale level. In this project, the team used the 
building HVAC loads with model-predictive and adaptive controls to mitigate the dynamic voltage issues 
when the solar generation mismatches the load demand. As mentioned previously, reducing excessive 
voltage regulation operations and extending the lifetime of existing mechanical-based voltage control 
equipment (e.g., LTCs) can be a control objective. This is a feasible approach from the load control 
perspective because it does not require significant additional capital investment. In this project, the team 
developed adaptive control strategies for building HVAC loads to mitigate the impact of solar power 
minute-to-minute fluctuations in the LTCs of distribution transformers and SVRs. Because single HVAC 
load has a relatively slow response, a fleet approach was adopted to seek an aggregation effect and 
diversified dynamics up to 5–10 minutes of control resolution. This work demonstrates a technical leap 
over conventional demand response programs and has a market potential to increase the hosting capacity 
of solar power in a distribution feeder. 

In summary, several new voltage control devices and approaches in distribution systems were reviewed—
including smart inverters, coordinated VVO, distribution STATCOM, and adaptive building HVAC load 
controls—that represent ongoing trends in research and practical applications to transition to an active 
distribution system. 



 

 

A.2 COORDINATION OF BUILDING HVAC LOAD CONTROL WITH SMART PV 
INVERTERS 

Individual building HVAC control has relatively slow dynamics in the range of tens of minutes (e.g., 
10 min). In this project, the team aggregated and coordinated a fleet of available HVAC units (e.g., 100 
units) to enhance the resolution of load control dynamics and control performance. However, under 
certain extreme scenarios, it is possible that significant portion of the coordinated 100 HVAC units will 
get into lock-off status during some highly dynamic solar production hours. Therefore, additional control 
resources are sought to manage the fast voltage fluctuations due to fast solar power variations. The 
encouraging factor is that the fast- or high-frequency components in solar power spectrum are relatively 
small and do not occur frequently based on the solar spectral analysis presented in prior reports. This 
section investigates different coordination and integration schemes of building HVAC load control with 
smart solar PV inverters and develops a new distributed voltage controller (DVC) to fill the gap in 
existing work from the literature survey.  

A.2.1 Control Integration at ADMS Level 

One common practice for DSOs is to adopt a centralized optimization and control structure [110]. At the 
distribution system level, all the voltage control devices—including distribution substation transformer 
with LTCs, feeder voltage regulator, capacitor banks, D-STATCOM, and smart inverters—must be 
coordinated by the IVVC within the ADMS for optimal operations to maintain the desired voltage at any 
point along the feeder. 

The dynamic load controls that the team is currently developing can be integrated into this optimization 
engine at the distribution system level, which uses real-time measurements, a distribution system model, 
and an online power flow computation function to calculate the optimal set of control actions and then 
sends the control set points to the local load controllers via SCADA or a communication link. However, 
the dynamic load controls can also operate in the background independent of the DMS model-based VVO 
to track and offset the solar power minute-to-minute fluctuations, which in turn reduce the operation 
workload of LTCs. 

A.2.2 Control Coordination at Local Node 

Emerging distribution voltage management approaches are moving toward decentralized or completely 
distributed structure [33]. For the sake of scalability and plug-and-play, the team adopted a distributed 
control approach without increasing the DER management system (DERMS) control burden. Specifically, 
at the local area or node level, the developed load controller will communicate with the solar PV inverter 
onsite to obtain the real-time solar active power data. Typically, the voltage control of smart inverters is 
based on fixed or dynamic reactive power compensation (absorbing and injecting) by using local voltage 
measurement, whereas the dynamic load control is based on direct real power changes. So, the two 
control techniques complement each other in the sense that the load controller controls real power in the 
background—indirectly controlling the voltage—while the PV inverter or any other smart inverter (e.g., 
energy storage) controls reactive power to regulate the voltage precisely and for a shorter period at a 
timescale of seconds. There are economic benefits associated with this integration because with load 
controls, system cost can be reduced without the need of additional energy storage and oversizing of the 
smart inverters to provide additional reactive power, and the renewable energy use can be increased 
without potential solar power curtailment in smart inverter-only configurations. Like any other control 
technique, dynamic load control also has limited dynamic capacity, depending on the temperature, 
occupancy and satisfaction, and aggregate quantity. So, the smart inverter and dynamic load control can 
be integrated more closely through communications. A system controller on top of a smart inverter and 
load controller will be designed to optimally determine the sharing of voltage control responsibility based 



 

 

on real-time measurements (e.g., temperature, solar power) in terms of real-time control capacity, 
economics, and human factors. 

A.2.3 The Need for Distributed Control Approach 

With the continuous increasing number of DERs, the DMS and operator might become incapacitated due 
to complex optimization problem size and/or limited control points. Hence, as discussed previously, there 
is a trend to move toward decentralized or distributed control philosophy. The development of smart 
inverter is one step toward this goal. As defined in California Rule 21, seven autonomous control 
functions, including dynamic Volt-VAR controls and fixed PF, have been defined for smart inverter 
operation. In the full revision of IEEE 1547 [103], five different voltage control modes are proposed, 
including adjustable constant PF mode, voltage-reactive power mode, active power-reactive power mode, 
adjustable constant reactive power mode, and voltage-real power mode. Some of these control 
functions/modes are autonomous, meaning that without the need of upper-level supervisory control, some 
will need commands from an upper-level controller. This has left a gap for control coordination and 
system global optimization. California Smart Inverter Working Group approached this in Phase 2, 
requiring communication capability for smart inverters, and in Phase 3, defining advanced functions 
under communications. However, these existing activities do not address the challenges of high-
penetration solar PV and the issues of DERMS/ADMS control scalability. With the aforementioned 
background and within the common practice of DERMS/ADMS control framework, the team proposes a 
DVC, which coordinates responsive/adaptive HVAC load control with the local smart inverter connected 
at the same feeder nodes to achieve an optimal voltage control solution in terms of high consumer energy 
efficiency, reduced feeder power loss, maximal renewable energy use, and the least cost to achieve the 
same goal. The proposed DVC can also be integrated into a centralized control framework (e.g., IVVC 
from ADMS) or a cooperative control framework with additional voltage control requirements (i.e., the 
control amount to guarantee downstream node voltage stays within the ANSI limits in a radial power 
system) from the downstream feeder node. 

A.2.4 Concept of a New DVC 

As illustrated in Figure A-18, this new DVC can be associated with any node in a distribution feeder 
equipped with a smart PV inverter and adaptive building HVAC load controller. This feeder node can be 
connected to an upstream feeder node and/or a downstream feeder node. The node DVC will receive one 
or more voltage control commands from either a central controller or multiple voltage controllers at the 
downstream neighboring nodes. This control signal is the delta-V required to guarantee the global optimal 
voltage quality and can be treated as a tertiary control signal. The DVC serves as a local secondary 
voltage controller to optimize and coordinate the voltage control efforts of smart PV inverters and load 
controls. For the smart inverter, the DVC can dispatch either the reactive power reference or an optimal 
voltage reference, which will initiate a corresponding voltage control mode within the smart inverter. For 
the load controller, the DVC will dispatch a delta-P that represents the required load change amount. The 
DVC engine is a local optimization algorithm and solver that is much smaller than the IVVC problem in 
the centralized control and faster for real-time and online control. The primary objective is to find the 
optimal voltage reference setting for the current node without considering the down-streaming nodes’ 
voltage requirements. This small voltage optimization and control problem will be solved at timescales of 
1–5 min and will provide the voltage or reactive power reference to the smart inverter primary controller. 



 

 

 
Figure A-18. System hardware architecture of the DVCs. 

A.3 IEEE 13-NODE TEST FEEDER DISTRIBUTION-LEVEL PV PENETRATION ANALYSIS 

As the solar PV system price continues to drop, the number and size of PV installations continue to 
increase, leading to a new era of high-penetration solar in the distribution system. Despite the economic 
and environmental benefits, high-penetration solar PV scenarios have been observed [29, 111] to impact 
the grid in various aspects and impose challenges for distribution network operators. Particularly, feeder 
voltage impact is attracting much of the attention. For example, because of inherent variability, PV 
generation can be greater than the local demand, and the excess power could produce reverse power flows 
in a distribution feeder. This would not only lead to voltage rise but also potentially violate voltage limits 
along the feeder. The impacts can further reduce the lifetime of the transformer due to rapid tap changing 
adjustments.  

Depending on the solar PV penetration level, the following potential voltage impacts might occur in the 
distribution feeder buses, which are crucial for distribution system planning and design: 

• steady-state over-voltage exceeding admissible operational conditions (ANSI voltage limit, 5% above 
nominal), 

• transient voltage spikes, and 

• significant voltage variability resulting in poor voltage regulation and increased cycling and stress on 
voltage control equipment, such as LTCs, line regulators, and switched capacitor banks. 

The impact of solar power on a distribution feeder voltage profile can be analyzed by performing steady-
state power flow analyses, which assume constant load and solar power generation. However, to quantify 
the operational impact on distribution substation transformer LTCs or feeder voltage regulators, the 
analysis must account for the time variability of load and solar power at the seconds or minutes timescale. 
This requires high-resolution load and solar power generation data and dynamic or QSTS simulations 
[112]. 

Other works [29–30, 111] have reported the steady-state voltage impacts, but little work has been done on 
the lifetime impact on feeder voltage regulation devices and mitigation options. Recently, adaptive 
building HVAC controls were proposed to mitigate the time-dependent voltage impacts of solar PV 
power. However, to quantify the control performance, the baseline analysis of nodal voltages and feeder 
LTC operation behaviors under different solar penetration levels must be understood. This section 
presents the analysis performed to understand the impact of PV penetration on LTCs. For clarification, in 
this report, the capacity penetration level is adopted and defined as the nameplate capacity of the 
combined solar PV inverters on a circuit divided by the peak annual load on that circuit. 
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In the following analyses, the solar PV inverters are assumed to be complaint with IEEE 1547-2003 and 
not equipped with advanced functions, such as dynamic Volt/VAR control or solar power curtailment 
functions. The Electric Power Research Institute’s (EPRI’s) OpenDSS3 and Sandia National Laboratories’ 
GridPV4 tools were used for the QSTS simulations. The IEEE 13-node distribution test system was 
chosen for the analyses due to its highly unbalanced nature and the simplicity of the system.  

Regarding to the modeling tools, the team chose EPRI’s OpenDSS because it is open source, is widely 
recognized within the power industry, and can perform different power system analyses. The following 
paragraph is excerpted from the OpenDSS website: 

The OpenDSS is a comprehensive electrical power system simulation tool primarily for 
electric utility power distribution systems. It supports nearly all frequency domain (sinusoidal 
steady state) analyses commonly performed on electric utility power distribution systems. In 
addition, it supports many new types of analyses that are designed to meet future needs 
related to smart grid, grid modernization, and renewable energy research. The OpenDSS tool 
has been used since 1997 in support of various research and consulting projects requiring 
distribution system analysis. Many of the features found in the program were originally 
intended to support the analysis of distributed generation interconnected to utility distribution 
systems and that continues to be a common use. Other features support analysis of such 
things as energy efficiency in power delivery and harmonic current flow. The OpenDSS is 
designed to be indefinitely expandable so that it can be easily modified to meet future needs. 

Electricité de France (EDF) conducted a study5 to compare OpenDSS with another software FACE in 
2010. The conclusion was that “OpenDSS is able to achieve good accuracy within a rather short time. 
OpenDSS appeared to have better results than FACE, which had been studied by EDF R&D.” In this 
work, the team also compared its steady-state power flow analysis results with the ones for the IEEE 13-
Node Test Feeder [113] and confirmed very good matching when using the OpenDSS solver. 

GridPV is a MATLAB toolbox developed by Sandia National Laboratories that provides MATLAB-style 
visualization abilities of the power flow analysis results from OpenDSS through a COM interface. The 
IEEE 13-Node Test Feeder,6 shown in Figure A-19, was used in this work to examine the voltage impact 
of different solar PV penetration levels. This is a relatively small feeder, and it exhibits many interesting 
characteristics [113], such as short and highly loaded 4.16 kV feeder, substation voltage regulator 
consisting of three single-phase LTCs at Bus 650, one three-phase fixed capacitor at Bus 675 and one 
single-phase fixed capacitor at Bus 611, and nine load buses connected into different phases. The 
crossbars in the figure depict the number of phases and demonstrate that the feeder is unbalanced.  

 
3 http://smartgrid.epri.com/SimulationTool.aspx  
4 https://pvpmc.sandia.gov/applications/gridpv-toolbox/  
5 http://smartgrid.epri.com/doc/EPRI%20Smart%20Grid%20Advisory%20Update%202010_11_16.pdf  
6 https://ewh.ieee.org/soc/pes/dsacom/testfeeders/ 



 

 

 
Figure A-19. One-line circuit of IEEE 13-Node Test Feeder. 

The total peak load demand in this feeder is 4,053.6 kVA with 3,466 kW of real power and 2,102 kVar of 
reactive power. The peak load PF is 0.85. This section presents the results of a centralized three-phase PV 
system with inverters interconnected into Bus 680. This represents the worst-case scenario for voltage 
impact analyses. 

A.3.1 Annual Load and Solar Power Profiles 

For time series simulation, hourly load data for a 1 year period were collected with a linear interpolation 
to increase the data resolution to 1 min. All the single-phase and three-phase loads use individual load 
profiles, although they show similar patterns. In Figure A-20, the normalized hourly load profile for 
single-phase and three-phase loads is plotted for 8,760 h.  



 

 

 
Figure A-20. Annual load profile for single-phase and three-phase loads. 

Similarly, high-resolution solar power data are required to demonstrate the voltage impact at the seconds 
or minute timescale. For this study, the 5 min Tennessee’s solar generation data from National Renewable 
Energy Laboratory’s (NREL’s) solar power data for integration studies7 were used. Normalized 5 min 
solar power data are plotted in Figure A-21. Again, linear interpolation was used to obtain 1 s resolution 
data for the simulation.  

 

 
Figure A-21. Annual solar PV generation profile. 

A.3.2 Solar Power Production at Different Penetration Levels 

As mentioned previously, the solar PV penetration level is defined by the maximum or rated PV inverter 
power capacity divided by the feeder peak load. For the IEEE 13-Node Test System, these data are given 
in Table A-1 for different penetration levels. 

 
7 http://www.nrel.gov/grid/solar-power-data.html 
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However, the real-time solar power generation depends on the solar irradiation and ambient temperature, 
which will be much less than the rated nameplate power. In our study, we used real solar power 
measurement data collected from NREL’s previous integration studies and normalized as the solar power 
generation profile. For a typical week in August, the solar PV power generations for different defined 
penetration levels are shown in Figure A-22, and the approximate peak PV power is also listed in 
Table A-2 with equivalent penetration levels.  

  
(a) 10% PV penetration. (b) 20% PV penetration. 

  
(c) 30% PV penetration. (d) 40% PV penetration. 

  
(e) 50% PV penetration. (f) 60% PV penetration. 
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(g) 70% PV penetration. (h) 80% PV penetration. 

  
(i) 90% PV penetration. (j) 100% PV penetration. 

Figure A-22. Solar PV generation in 1 week in August at different penetration levels. 

 

Table A-2. Solar power generation at different penetration levels. 

Defined 
penetration 

level (%) 

Maximum PV 
inverter power 
capacity (kVA) 

Approximate peak 
PV power generation 

(kVA) 

Equivalent penetration 
level (ratio to peak 

load) (%) 
10 405 240 6 
20 811 450 11 
30 1,216 750 18 
40 1,622 900 22 
50 2,027 1,200 29 
60 2,432 1,500 37 
70 2,838 1,800 44 
80 3,243 2,000 49 
90 3,649 2,300 56 
100 4,054 2,400 59 
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A.3.3. Impact on Steady-State Voltage Profile 

In this study, the test feeder circuit was modeled by using EPRI’s distribution analysis tool, OpenDSS. A 
steady-state power flow analysis was performed for the cases of no solar PV and 50% solar PV 
penetration. Figures A-23 and A-24 show the steady-state voltage profile for no PV and 50% PV, 
respectively. From the results, the voltage at all the phase feeder ends is elevated, particularly for Phase B 
(red) because of the fixed capacitor bank at Bus 675. The voltage in Phases A and C also increased 
because of the reverse power flow from solar PV, which increased the voltage of Bus 671. 

 
Figure A-23. Steady-state voltage profile with no solar PV. 

 
Figure A-24. Steady-state voltage profile with 50% solar PV penetration. 



 

 

A.3.4 Impact on Substation Voltage, PF, and Capacitor Voltage 

To analyze the impact of solar power minute-to-minute fluctuations on the feeder and bus voltages, QSTS 
simulations are needed. In this work, Sandia National Laboratories’ GridPV toolbox for MATLAB was 
used, which calls for OpenDSS for quasi-steady-state power flow analysis (i.e., “multiple snapshots”) 
through OpenDSS’s COM object interface.  

The QSTS simulation was performed for a typical day in August with a 1 s time step. The load and solar 
power data were interpolated within the OpenDSS software to obtain the 1 s resolution data. A three-
phase PV inverter was interconnected to Bus 680 with a rated capacity of 4,054 kVA, which namely 
represents 100% penetration based on the feeder’s annual peak load. In real-world scenarios, depending 
on the solar irradiation and temperature, the solar power generation can be much lower, as shown in 
Figure A-25 for an arbitrarily selected day, which has a peak power of roughly about 3,000 kW for three 
phases. Based on the earlier assumption of no Volt/Var control, the PV inverter only generates real power 
and does not provide reactive power. 

 
Figure A-25. Solar PV generation for a typical day in August. 

For the same day, the substation voltage, net load, PF, and the voltages of two capacitors are plotted in 
Figures A-26 through A-30. As shown in the figures, during the middle of the day when solar PV is 
generating real power, the substation net real power load is reduced. However, for the same time period, 
the reactive power load increasingly results in a dip in substation PF to approximately 0.1 and a slightly 
lower substation voltage due to the operation of LTCs. The voltage effects on two fixed capacitors are not 
dramatic because the PV inverter does not generate reactive power.  
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Figure A-26. Transformer secondary voltage. Figure A-27. Substation net load. 

 

  

Figure A-28. Substation feeder PF. Figure A-29. 3f cap. voltage at Bus 675. 

 

5205 5210 5215 5220 5225 5230 5235
2401.65

2401.7

2401.75

2401.8

2401.85

2401.9

2401.95

2402

Hour

Vo
lta

ge
pv Substation Voltages

5205 5210 5215 5220 5225 5230 5235
-200

0

200

400

600

800

1000

Hour

Po
w

er
 (k

W
,k

Va
r)

pv Net Substation Load

 

 
P1 (kW)
P2 (kW)
P3 (kW)
Q1 (kvar)
Q2 (kvar)
Q3 (kvar)

5205 5210 5215 5220 5225 5230 5235
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Hour

Po
w

er
 F

ac
to

r

pv Feeder Mean PF: 0.79

5205 5210 5215 5220 5225 5230 5235
2340

2360

2380

2400

2420

2440

2460

2480

2500

2520

Hour

Vo
lta

ge
pv Cap1 Voltages



 

 

 
Figure A-30. Single-phase capacitor voltage at Bus 611 (Phase C). 

A.3.5 Impact on Voltage Regulator LTC Operation 

The impact on voltage due to PV variations could increase the tap change operation counts of the feeder 
voltage regulator or substation transformer LTCs. This was verified by the QSTS simulations for 1 week 
with a 1 min time step at 50% solar PV penetration, as shown in Figure A-31. Solar PV power can change 
dramatically within a very short time due to passing clouds. EPRI has measured up to 1 MW per 20 s in 
the field. A worst-case scenario would be the ramping of solar PV output from zero to the maximum 
output power in tens of seconds, which is faster than the feeder regulation equipment can respond because 
voltage regulation equipment typically has a time delay of 45–90 s, so this will result in potential 
overvoltage exceeding the regulation bandwidth.  

 
Figure A-31. Tap changes (left: no PV, right: with 50% PV). 

To investigate the effects of different solar PV penetration levels, multiple simulations are performed for 
a 1 year period at a 1 min time resolution. The accumulated tap changes over a 1 year period are shown in 
Figure A-32 for no PV and with PV penetration from 50 to 100% at 10% increases. In this figure, the 
total tap changes significantly increase from 600 times to 1,000 times for Phase A, 240 times to 580 times 
for Phase B, and 750 times to 1,100 times for Phase C with an increase in PV penetration from 0 to 100% 
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(a) Cumulative tap changes for Phase A. (b) Cumulative tap changes for Phase B. 

 

(c) Cumulative tap changes for Phase C. 

Figure A-32. Cumulative regulator tap changes over a 1 year period for  
different solar PV penetration levels. 

 

A.3.6 Smart PV Inverter with Voltage Regulation Function 

Traditionally, solar PV inverters only provide basic energy feeding functions (i.e., inject real power only 
to the power grid based on the MPPT at different solar irradiances and ambient temperatures). IEEE 
Standard 1547-2003 and UL 1741 require a solar PV inverter to trip off in case of abnormal grid voltage 
and frequency. 
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With increased solar installation penetration in distribution grids, the operation reliability and stability, as 
well as power quality issues, are becoming eminent. A smart inverter concept [70, 102] was proposed that 
calls for advanced control functions to provide ancillary grid services, including dynamic reactive power 
control and voltage regulation [105], for solar PV inverters. Currently, IEEE standard 1547 is under full 
revision to allow or mandate solar PV inverters for these advanced grid voltage regulation functions.  

A.3.7 Dedicated Volt/Var Compensation Devices 

Conventional distribution system operation has been treated as a Volt/Var control problem over the years, 
using the distribution transformers equipped with LTCs, feeder voltage regulators, and fixed or switched 
capacitor banks. These mechanical devices are slow reacting and can be controlled only by certain voltage 
steps or ratios. Thus, they are handicapped to respond to the fast dynamics introduced by increasing 
renewable energy systems. SVCs or other flexible AC transmission system-type devices (e.g., FACTS) 
have been developed to cope with this issue by using the solid-state switches to provide continuous 
reactive power compensation. These systems are typically costly and are under replacement due to using 
the aged and old-fashioned semiconductor devices (e.g., gate turn-off thyristors). 

With the development of multilevel power electronics converters and high-voltage, high-efficiency wide 
bandgap semiconductor devices, solid-state transformers [114] or partial solid-state transformers (also 
called controllable transformers [115]) are developed to offer combined power flow and voltage controls. 
Small-scale distributed Volt/Var compensation devices that use power electronics, called grid edge 
technologies [116], are also emerging to provide distributed voltage management.  

A.4 DISTRIBUTED VOLTAGE CONTROL 

A.4.1 Background on DVC 

Power or load flow computation has been a traditional problem for the transmission system operator. This 
problem computes voltage magnitude and angle at each bus, real and reactive power flows for all 
equipment interconnecting the buses, subjecting to the constraints of power flow balance, bus voltage 
magnitude close to rated value or within limits, generator P and Q within specified limits, line and 
transformers not overloaded. The power flow analysis assumes that the power system is operated 
normally and is steady-state with balanced three phases by using a single-line diagram. The classical 
algorithms or solvers include Gauss-Seidel method, Newton-Raphson method, and Fast Decoupled 
method. 

More commonly, the power flow will be an OPF problem—the first of which was formulated in 1962 by 
Carpentier [117–118]—which is the heart of independent system operator’s power market and is solved 
every year for system planning, every day for day-ahead markets, and every hour and even every 5 min 
for spot markets. The typical objective functions for the OPF optimization problem are minimizing fuel 
costs; minimizing system losses or minimizing generation or maximizing transfer; minimizing load 
shedding, thereby improving reliability; minimizing control actions, hence extending device lifetime; and 
so on. Besides the aforementioned constraints, contingency constraints might be also considered to form a 
security constrained OPF problem. 

This problem is difficult to solve due to its nonconvex nature and its challenges on computation power, 
speed, and solution accuracy (i.e., the optimality). Distribution system or the new DSO model typically 
does not perform a complete OPF analysis because of the nature of distribution system in North America 
(i.e., unbalanced three phases and high R/X ratio making P and Q hard to decouple). However, a special 
case in distribution systems is the VVO, which is the distribution voltage control problem. 



 

 

The primary goal for distribution voltage control is to maintain the nodal voltages within the ANSI limits. 
Other objectives or criteria are to minimize power losses on the feeders, reactive power adjustments on 
nodes or total reactive power exchange, the number of switching operations, voltage deviations from a 
voltage reference on nodes or voltage differences among nodes, and so on. With the introduction of DGs 
and penetration of solar PV inverters, minimizing renewable power generation curtailment and 
maximizing DG active power output are also goals.  

A.4.2 DVC Methods 

Previously, the team systematically surveyed the topic of distribution VVO from power quality and 
energy efficiency requirements, existing utility practices (SCADA-based and DMS-based solutions), and 
various control devices, including the utility-owned distribution substation transformer equipped with 
LTCs, feeder SVRS, fixed or adjustable capacitor banks, power electronic-based D-STATCOM or UPQC 
devices, and grid-edge technologies (e.g., solar PV inverters). Then, the team summarized different 
distribution voltage control and communication architecture and briefly evaluated the advantages and 
disadvantages of various decentralized methods. After observing and identifying the emerging trends of 
distribution voltage control, the team proposed a new DVC structure that comprises a two-level control 
structure (Figure A-33) (i.e., the local optimization and primary control level and distributed global 
optimization and secondary control level). At the primary control level, the HVAC load is tracking solar 
PV active power, and the PV inverter tracks the load reactive power; at the secondary control level, a 
DVC determines additional P and Q reference for local controllers, and the DVC communicates with 
neighboring upstream and downstream nodes. If these nodes do not have communication and/or control 
capabilities, the DVC will communicate with a central VVO engine (e.g., the IVVC in the ADMS, the 
distribution substation automation system).  

 
Figure A-33. Proposed DVC control structure. 

For a distribution circuit, the team’s goals were to (1) minimize the P and Q power flow from the 
transmission system to alleviate the transmission congestion issue, (2) minimize the total power loss of 
the distribution circuit for maximized energy efficiency, (3) maximize solar power production to increase 
renewable power penetration, and (4) minimize the switching actions of LTCs and capacitor banks due to 
voltage fluctuations for extended equipment lifetime. Scalability, computation, and communication 
requirements are main factors for choosing proper optimization and control approaches. 

First, the team formulated a centralized optimization problem as the baseline approach. The team 
considered a simple four-node radial distribution system, as shown in Figure A-34, including a 
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distribution transformer with LTC at the head bus and load and a PV inverter at each node. The load can 
be controllable or noncontrollable. For simplification, the team initially omitted any capacitor banks, 
SVRs, and STATCOM-type voltage control devices. So, the control time hierarchy (Figure A-35) will be 
as follows:  

• Distribution transformer with LTC: Hourly control. 
• Adaptive load control: 15 min control. 
• Solar PV inverter: 1 min control. 

 
Figure A-34. A simple radial distribution feeder circuit with  

DVC communication scheme. 

 
Figure A-35. Control time hierarchy. 

The team will minimize an objective function with total system (i.e., real power) loss that is subject to 
node voltage constraints, PV inverter reactive power constraints, and approximated power flow equations 
(the LinDistFlow model): 

 min
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s.t. for 𝑖 = 0,1, …𝑛 − 1: 

 𝑉 ≥ 𝑉. ≥ 𝑉, (A-2) 

 𝑄7. ≤ O𝑆.8 − 𝑃7.8 , (A-3) 

 𝑃.4+ = 𝑃. − 𝑃9,.4+ + 𝑃7,.4+, (A-4) 



 

 

 𝑄.4+ = 𝑄. − 𝑄9,.4+ + 𝑄7,.4+, (A-5) 

 𝑉.4+8 = 𝑉.8 − 2(𝑟.𝑃. + 𝑥.𝑄.). (A-6) 

The power flow equations for practical distribution systems will be slightly more complex because lateral 
branches can be extended at any node. To model the complete circuit, there will be a set of DistFlow 
equations for any branch circuit and a connection power flow at the branch-out node. To solve the 
distribution VVO problem in a distributed fashion, certain relaxation and decomposition techniques (e.g., 
dual decomposition, dual ascent, ADMM, consensus algorithm) must be applied so that the original 
optimization problem is converted into a sum of multiple subproblems, which each voltage control device 
can solve individually—perhaps with some inputs from other voltage-control devices requiring 
communications—and collectively reach the optimum after a few iterations. So, the convergence, the 
time/computation efforts to reach convergence, and the deviation from the global optimal value are 
important criteria for evaluating the performance of such distributed optimization methods. 

Nonetheless, the team wants to explore complete model-free voltage control approaches (i.e., autonomous 
voltage-control functions without any communication) because this provides the most scalability and the 
least implementation cost for high-penetration solar PV scenarios. The team’s objective is to investigate 
how well such approaches (i.e., global optimal vs. suboptimal) can directly or indirectly achieve the 
minimized objective function (e.g., total power loss or solar power curtailment/mechanical switching 
actions). This would improve understanding of the trade-offs of control vs. optimization and 
communication vs. optimality, as well as offer different operation choices for DSOs. For brevity, the 
summary of the techniques explored is given as follows. 

1. Net-zero distribution node: If the local load real power demand connected to the node can follow with 
the local solar power generation and the solar PV inverter injects or absorbs the local measured load 
reactive power, then this distribution node will become net-zero and thereby minimize the distribution 
power flow and power loss accordingly. In practice, the exact net-zero might be difficult, but it is 
possible to offset partial power flow and contribute to the power loss minimization. Because there is 
no interaction between the primary feeder voltage control devices and PV inverters, the system will 
always be stable.  

2. Piecewise linear voltage control (i.e., droop control or volt-var control: One common local voltage 
control characteristic is the piecewise linear voltage control. This control function has been included 
in IEEE 1547.8 (withdrawn) and reinstated in the newly published IEEE Standard 1547-2018. The 
voltage control with IEEE 1547 control curve was observed [47] to show instability in single PV 
inverter and multiple PV inverter cases in which reactive power injection and voltage exhibit 
undesired oscillatory behaviors between two operating points. Control delays, larger droop slope, and 
step size all contribute to this instability issue. The solutions that can mitigate this issue are: 

• smooth by a first order low-pass filter, 
• incremental voltage control, and 
• smooth approximate control curve. 

3. Incremental voltage control: The piecewise linear voltage control exhibits oscillatory (i.e., haunting) 
behavior, as previously discussed. This instability concern can be mitigated by inserting a first-order 
low-pass filter. Alternatively, it is possible to design a control algorithm so that the reactive power 
decision relies not only the bus voltage but also on previous reactive power injection, leading to the 
so-called incremental voltage control. This voltage control algorithm is similar to an integral 
controller and can effectively mitigate the voltage fluctuations. The decentralized voltage control was 
proposed in Li, Qu, and Dahleh [119]. Thus far, the incremental voltage control algorithm only 



 

 

addresses voltage regulation to maintain within acceptable ranges. In future work, we will revisit the 
incremental control algorithm and apply a sub-gradient method to minimize power loss.  

4. Modified voltage control curve: As discussed in point 2, the piecewise linear voltage control curve 
has demonstrated convergence problems with the solution jumping back and forth across the points 
where the first derivative of voltage control curve is discontinuous. In Turitsyn et al. [48], this issue 
was eased by a modified voltage control curve, which is smoothed by using a sigmoid function, as 
shown in Eq. (A-7) and Figure A-36. In Eq. (A-7), the parameter d can be varied to control how 
closely the smoothed curve approximates the sharp transition of the original control function. 

 . (A-7) 

 
Figure A-36. Voltage control curve smoothed by a sigmoid function [48]. 

A.4.3 Adaptive and/or Feedback Voltage Control 

The reactive power capability of a solar PV inverter is subjected to its designed apparent power capacity 
and limited by the real power output set by the MPPT controller. This is because PV inverters are 
primarily used for grid (i.e., energy) feeding with limited secondary or ancillary grid (voltage) supporting 
functions. At certain distribution nodes where a higher reactive power injection or absorption is needed, 
distribution STATCOM devices can be placed, assuming the responsibility of voltage regulation. In this 
case, closed-loop feedback voltage controls can be designed for voltage regulation by using regular PI 
controllers, self-tuning, or model-reference adaptive voltage regulators. 

The distribution voltage and var control problem has essentially become a multi-timescale, multidevice 
coordination and optimization problem that involves utility-controlled devices and devices owned by 
independent power producers and consumers or prosumers. Completely centralized or completely 
distributed approaches might be impractical. With existing utility structure and various emerging demand-
side resources, a pragmatic and holistic approach would be helpful to address the distribution voltage 
control problem. First, the team considered the existing market structure and regulating devices in 
medium-voltage distribution grids. Energy efficiency was pursued by utilities in 1970s due to the oil 
embargo and was pursued once again in the early 2000s due to global warming; as a result, CVR 
programs rose in popularity. It was not until the 2010s that utilities started to shift their strategies toward 
VVO programs as part of smart grid demonstration projects.  

Opposite from the demand side, DERs such as solar PV inverters have experienced a series of control 
function changes per standard requirements, mainly IEEE Standard 1547. Initially, solar PV inverters 
followed the operation strategy of purely energy or grid feeding (i.e., MPPT and current control modes) 



 

 

and deenergize the grid (e.g., abnormal grid voltage and frequency conditions, grid faults) based on 
previous standard requirements specified in IEEE 1547-2003. With the increasing penetration of solar 
power and corresponding utility operation challenges, such as the duck curve phenomena, utilities have 
changed their attitude toward PV inverters from ignoring them to regarding them as assets that can aid in 
grid management during shortages. This has pushed the addendum (IEEE 1547a-2014) and the full 
revision approved as IEEE 1547-2018. Nonetheless, IEEE 1547 only defines the interconnection 
requirements of DERs but does not fully addresses the active operation and control coordination of DERs 
after the interconnection. Generally, these efforts of defining autonomous control functions are still at the 
initial phase in which the team called local functions and the operations of utility-controlled devices (e.g., 
LTCs, voltage regulators, capacitor banks, STATCOM) and solar PV inverters are still isolated. So, the 
next phase would be coordinated controls to ensure that control efforts from various devices are not 
contradicted. The last phase would be to achieve a unified and globally optimized control among all the 
control devices and resources, including load control, within each specific distribution feeder or system. 
As a logical step, the team will follow this bottom-up integration strategy from the local level to the 
coordinated level to the optimized level, whereas the controls of multiple devices are coordinated locally 
at each level, thereby contributing to the overall optimization goal of energy efficiency.  

At the local level, the solar PV inverters and responsive loads at each distribution feeder node are 
designed to follow each other (i.e., the HVAC load control following solar PV active power production 
and the solar PV inverter following load reactive power), which subjectively reduces solar power 
curtailment and line power loss because of the required power flows short distance and voltage regulation 
requirements provided by utility-controlled devices.  

At the coordinated level, devices at different timescales must be coordinated in certain ways for efficient 
operation. For the utility-controlled devices—mainly LTCs at distribution substation, voltage regulators, 
and capacitor banks—the strategy is to track slow voltage variations that follow daily load consumption 
patterns (i.e., base voltage regulation) and unexpected contingencies. Their hourly voltage references are 
set up 1 day ahead on the basis of utility VVO and forecasted load profiles. This will limit the voltage-
control range for DERs so that these nonutility control devices can assume short time or fast voltage 
variations and regulation services locally in a fast way and thus the utility-controlled devices would not 
observe the voltage fluctuations around their voltage reference points, reducing their tap operations or 
switching actions and extending their lifetime. The utility load forecasting would have a learning curve to 
adapt to the net load profiles under DER controls over the time. For nonutility dispersed devices, such as 
solar PV inverters, the voltage references can be obtained from a short timescale (e.g., 1–5 min), model-
based feeder power flow analysis or by consensus algorithm, which takes the average among neighboring 
nodes. The 5 min adaptive load control method can mitigate voltage ramping variations due to passing 
clouds at midday, ramping up in the morning and ramping down in the afternoon. PV inverters can be 
deployed to control fast voltage variations at tens of seconds so that these voltage fluctuations will not 
activate LTC and SVR due to their time delay setting typically around 60 s. Figure A-37 illustrates the 
three timescales’ voltage control coordination. The purpose of coordination is to ensure that the system is 
operating properly within the permissible voltage limits as specified by ANSI and that each device is 
contributing voltage regulation based on its own capability.  

 
Figure A-37. Voltage control coordination at different timescales. 



 

 

The ultimate level is the optimized level in which the system is working at the best economical and 
efficient state—which has minimal overall power loss, renewable power curtailment, and control effort—
while still maintaining power quality and safety and serving customer requirements. This will require 
finding the best voltage and reactive power references for each device in a timely manner via advanced 
distributed optimization techniques. Distributed optimization will involve the processes of problem 
formulation (i.e., defining objective functions to be optimized and constraints to be satisfied), problem 
decomposition, information discovery, and iterative algorithms. Decomposition is necessary for solving a 
problem by dividing it into smaller problems and solving each separately, either in parallel or 
sequentially. There are generally two decomposition techniques: basic (i.e., primal) decomposition and 
dual decomposition. An information discovery scheme defines a communication map for who is 
communicating with whom, what information is shared, and how it is used, synchronized, or 
asynchronized. Figure A-38 shows an example map for distribution feeder nodes. Finally, distributed 
computation methods are used to update the decision variables (e.g., active power, reactive power, 
voltage, Lagrange multipliers) individually at each device toward the optimum through iterations. At this 
time, the team chose the ADMM, which converges significantly faster than other algorithms. 

 
Figure A-38. Information discovery scheme. 

The team explored different local voltage control strategies and discussed related stability issues. The 
team’s motivation was to devise a new feedback dynamic (i.e., iterative) control mechanism on the basis 
of local voltage control so that it can be treated as a distributed algorithm for solving a convex global 
optimization problem (e.g., minimizing total circuit power loss). The context of distributed optimization 
and control relative to the centralized optimization problem and the local control problem are illustrated 
in Figure A-39. In a centralized optimization problem, one must model the process and variables in the 
objective functions and constraints in an offline manner, whereas in a control problem, the real-world 
process does not necessarily need to be modeled, and the feedback approach is used to drive the process 
variable toward a desired state. The team’s motivation was to develop online and model-free optimization 
methods by using feedback and iterative algorithms. With this focus in mind, the following topics and 
work are continuing to be conducted. 

 
Figure A-39. Context of distributed optimization and control problem. 



 

 

Evaluation of control vs. optimization and communication vs. optimality: As discussed previously, 
distribution voltage regulation and loss minimization are conflicting objectives. There is a need to further 
study the trade-off of stability vs. optimality. Additionally, the role of communication in optimization 
shall be investigated to understand the trade-off of communication vs. optimality. Understanding these 
two topics will help the team design a more appropriate secondary control strategy to achieve the 
interested objectives. 

Communication vs. optimality: There does seem to be a question regarding the role of communications on 
global optimization, just as a centralized controller relies on communications and can achieve global 
optimality. The question asks whether multiple distributed controllers achieve global optimality without 
any direct and explicit communication to each other or to what extent (i.e., minimum communication 
requirements on the data quantity and communication bandwidth) global optimality can be achieved. On 
DVC, there are a few discussions regarding this topic. The value of communication in the voltage 
regulation problem was investigated in Stitt [2] to analyze the performance of purely local voltage 
regulation strategies and the distributed control strategies where minimal communications are allowed. 
The analysis and IEEE 123 bus test feeder simulation proposed agent-to-agent communication plays a 
fundamental role in the problem of DVC in terms of voltage regulation performance. However, the 
authors have not investigated the performance of minimizing total power loss. Bolognani, Cavraro, and 
Zampieri [120] compared the distribution power loss performance of distributed algorithms with complete 
communication graph and two different edge-disjoint communication graphs (uniform activation 
probability vs. optimal activation probability for each edge). The results showed that it was possible to 
achieve less power loss by using optimized communication strategy instead of by using complete 
communication graph. Although it is possible to develop a communication-free algorithm with locally 
available information to achieve a globally optimal solution, as reported in Zhang and Zhu [121], by using 
game-theoretic approaches, the team pursued a distributed algorithm with either scalable neighboring 
communications or implicit “communication” through feedback and iteration approach.  

Control vs. optimization: Generally, control problems deal more with stability issues on a real-time basis, 
whereas optimization problems provide an optimal setting in an offline manner during planning. With 
emerging distributed optimization techniques, there are interests [122–125] to interpret a centralized or 
distributed convex optimization problem from control perspective, and vice versa, to interpret a feedback 
dynamical system as a distributed algorithm for solving a convex global optimization problem. This effort 
has shed light on the control-theoretic or feedback approach for optimization problems and could achieve 
the goal with less computation power in the controller and without solving any power flow model 
(i.e., model-free). Limited communication (e.g., among neighboring nodes) might be necessary for agent 
coordination. 

Design of DVC secondary control strategy: A review of DVC methods can be found in Satsangi and 
Kumbhar [106] and Luo et al. [107] in which different optimization problem formulations and various 
iterative algorithms for distributed optimization were adopted. In this work, the team focused on radial 
distribution systems under high-penetration solar PV scenarios in which smart PV inverters and load 
controllers provide system functions of coordinated voltage control and system loss optimization to a 
certain extent if not in a global sense, which is desired. This concept of “smart inverter with integrated 
system functions” was originally proposed in the team’s previous work [126] and has not yet been fully 
investigated. The team wants to pursue this direction for the aforementioned reasons: scalable, model-
free, and minimal communication requirements. 

A.4.4 Problem Formulation 

 First, a global optimization problem formulation will be constructed. The objective functions can be to 
minimize the system’s real power losses, the total voltage deviations of all the nodes (usually in quadratic 



 

 

form because it fits well into most established optimization methods), the total cost of reactive power 
generation from all the controllable devices, or a weighted combination of these three objectives. In this 
problem, the team considered total system loss solely as the objective function. For voltage regulation, a 
flat voltage profile might be elegant but might also be inefficient from a system perspective. Therefore, a 
flexible voltage profile is necessary if the voltage constraints are placed for all the nodes based on ANSI 
limits. The cost aspect of voltage control and reactive power compensation can be associated with game-
theoretic approaches, which are handled as a separate optimization problem. 

There are two ways to model the system power loss: directly and indirectly. The direct method models the 
line loss at I2R with explicit line resistance parameters, whereas the indirect method applies power 
balance and calculates the system loss as the balance of generation and load. Accordingly, system loss can 
be computed by the sum of the loss at each node (indirect) or the direct line loss, including transformer 
loss. The direct method is only accurate when all the component losses are modeled.  

Direct system loss modeling: The DistFlow branch model is used to formulate the direct system power 
loss problem: 
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Model-free or indirect loss modeling: In this work, the teal modeled the system losses indirectly, and the 
distribution feeder topological information (i.e., locations of distributed energy resources and loads, as 
well as how they are connected) will be modeled in the power flow equations. Because the reactive 
current contributes to the line loss, the team considered minimizing real power losses and “reactive power 
losses,” which are essentially the reactive power exchange between line reactance and reactive power 
sources. The quadratic form of the system losses was also used here: 
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The team assumed that the load demands are noncontrolled parameters or given parameters by other 
control mechanisms, and none of the DER real power generation participates in the voltage-control 
problem and system loss optimization because of other objectives (e.g., maximizing renewable energy). 
Therefore, the team only minimized the reactive power portion of system losses: 
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In distribution systems, there are five different node configurations: 

• load-only node (i.e., Pgi=0 and Qgi=0), 

• DG-only node (i.e., Pdi=0 and Qdi=0), 

• load with DG node (i.e., Pgi¹0, Qgi¹0, Pdi¹0, and Qdi¹0), 

• purely branch node (i.e., Pgi=0, Qgi=0, Pdi=0, and Qdi=0), and 

• substation bus node (i.e., Pgi¹0, Qgi¹0) but uncontrolled from the distribution side or in this problem; 
essentially, they can be treated as infinity, and the inbound power flow will balance the difference of 
generation and load within the target distribution system, which will be minimized in this problem. 

The voltage and reactive power generation constraints shown by Eqs. (A-12)–(A-13) must be included. 
The remaining constraints are the topological power flow models and power balance equations, which the 
team will substitute with a simulation based-model and direct power flow and voltage measurements. 
This brings the benefit of simple computation and fast convergence to integrate distributed optimization 
more tightly with local controls. 

Problem decomposition: Decomposition is a general approach for solving a problem by dividing it into 
smaller problems and solving each separately, either in parallel or sequentially. There are generally two 
decomposition techniques: basic (primal) decomposition and dual decomposition. This will be 
investigated in future work. 

Iteration algorithms and information discovery: Distributed optimization relies on iterative algorithms to 
update the decision variables toward the optimum. Information from other neighboring distributed 
devices or agents are most likely required, so an information discovery scheme must be designed. The 
team will investigate the distributed computation methods, such as the ADMM, which is known to 
converge significantly faster than other algorithms. Consensus algorithms will be applied for information 
discovery. 

Development of a co-simulation platform for performance evaluation: The convergence, time and 
computation efforts to reach convergence, and deviation from the global optimal value are important 
criteria for evaluating the performance of distributed optimization methods. A simulation platform is 
required for control and optimization performance evaluation. For distribution systems that adopt DVC 
strategies, the team is developing a MATLAB/OpenDSS co-simulation platform. The distribution feeder 
circuit and components are modeled by using OpenDSS scripts. The DVC control algorithms are 
implemented in the MATLAB environment. The MATLAB codes will call for the OpenDSS power flow 
solver, which uses an open-source sparse matrix solver (“KLUSolve”) for power flow analysis. This 
power flow analysis will be performed in a controlled snapshot mode with embedded adaptive load 
control and DVC for smart inverters. The framework of a multi-timescale co-simulation platform, as 
shown in Figure A-40, comprises five modules: (1) a long timescale simulation tool to model power 
system dynamics daily, weekly, or yearly with minutes time steps; 2) a short timescale simulation tool to 
model the detailed power electronics dynamics at seconds with microseconds time steps; (3) multi-
timescale control modeling (e.g., 5 min PV inverter control, 15 min load control, and hourly LTC 
control); (4) an optional monitoring and governing module to enable the detailed converter modeling 
when potential quality and instability issues identified; and (5) the interface module to link all the 



 

 

modules. An experimental setup of the planned co-simulation platform was implemented with OpenDSS, 
MATLAB, and Simulink/Simscape/Electronics, as shown in Figure A-41. The power network partition 
concept is shown in Figure A-42 in which the data exchange and conversion between phasor-based 
modeling for the power system and the waveform simulation for power electronics is performed in the 
aforementioned interfacing module. 

 
Figure A-40. Framework of proposed multi-timescale co-simulation platform. 

 
Figure A-41. An experimental implementation of the co-simulation platform. 



 

 

 
Figure A-42. Power network partition for co-simulation. 

A.4.5 Accelerating DVC  

This section discusses the acceleration of solving PV inverter distributed optimal control by using 
modified ADMM and discusses coordination between the optimal PV control and smart building control.  

The distributed optimization model for PV control is formulated based on the SOCP-based branch flow 
model [54–55] of distribution networks. The objectives are to minimize the total nodal voltage deviation 
and network power loss. 
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where ui is the square of the voltage of node i; lij is the square of the current in line ij; u0 is the square of 
nominal voltage, which is 1.0 p.u; vi is the nodal voltage; Pij and Qij are the active and reactive power in 
line ij; PG,i and QG,i are the active and reactive power injections at the substation node; SG,i is the capacity 
of the substation; SPV,j, PPV,j, and QPV,j are the capacity, active, and reactive power output, respectively, of 
the PV at node j; PD,j and QD,j are the active and reactive power demand at node j. u+ j, u- j; and P+ j, P-j, 
Q+j, and Q-j are the local variables corresponding to uj, uj-1, Pj, Pj-1, Qj and Qj-1 at node j.  

The ADMM-based algorithm is solved as follows. First, an augmented Lagrangian function of each local 
optimization problem is constructed for each PV inverter, as shown in Eq. (A-28): 
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Then, for each iteration, the following steps are performed. 

Solve local optimization problem: for node j,  

 .
 (A-30) 

The solution is marked as P+ j(k+1), P- j(k+1), Q+ j(k+1), Q- j(k+1), u+ j(k+1), and u- j(k+1). 

Update global variables P, Q, and u: 

   

 .

 (A-31) 

Update Lagrangian multipliers: 

 .

 (A-32) 

When the primal and dual residuals converge to the preset thresholds or the number of iterations reaches 
its maximum, the solving process stops. 

To accelerate the convergence and solving process, the team applied an over-relaxed ADMM algorithm 
and an adaptive penalty parameter method to solve the distributed optimal PV control problem faster and 
meet the requirements of practical applications. 
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Over-relaxed ADMM: 

The over-relaxed ADMM is a variant of ADMM [127–128], which introduces a relaxation parameter α ∈	

(0, 2) and replaces  with  in the update of z and l. For a general 
optimization problem: 

  
 (A-33) 

The augmented Lagrangian function is: 
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The update process of ADMM is: 
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The update process of over-relaxed ADMM is: 
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Compared with the general ADMM, Eqs. (A-35)–(A-36) show that the over-relaxed ADMM adds an 

additional step of calculating  and using it to update z and . When , Eqs. (A-35)–(A-36) 
are equivalent. In this case, the over-relaxed ADMM algorithm achieved good performance when 

. The steps for the over-relaxed ADMM algorithm are described as follows. 
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Over-relaxed ADMM 

1: Initialization: k = 1,  

2: while  do 

3:   

4:   

5:   

6:  

7:   
8: end while 

 

Adaptive penalty parameter: 

The primal and dual residuals have different convergence speeds, which impacts the convergence of the 
overall solving process. The convergence of the two residuals can be coordinated or balanced by adjusting 
the penalty parameter ρ. When the penalty factor increases, the primal residual will decrease, but the dual 
residual will increase and vice versa. Therefore, the team applied an adaptive penalty parameter method 
[129–130] to further accelerate the convergence. Equation (62) was used to balance the primal and dual 
residual magnitudes to be within a factor of µ of one another as they both converge to zero. 

 .

 (A-37) 

where µincr, µdecr, tincr, and tdecr are parameters, which are set to 6 and 4, respectively. ρ k+1 is a penalty 
parameter associated with each consensus constraint. rk+1 and sk+1 are the local primal and dual residuals, 
respectively.  

Performance of the modified ADMM: 

The performance of the over-relaxed ADMM and adaptive parameter penalty method is demonstrated by 
comparing the general ADMM and modified ADMM algorithm. Figure A-43 shows that both methods 
have the same objective function value but that the modified ADMM takes fewer iterations to converge. 
The detailed comparison results are shown in Table A-3 in which the modified ADMM method is 
demonstrated to be more efficient in achieving faster convergence without losing any optimality. 
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Figure A-43. Convergence of the objective functions. a = 1.0 is the general ADMM,  

and a = 1.8 is the modified ADMM. 

Table A-3. Comparison results of the two methods. 

 a = 1.0 a = 1.8 
Number of iterations 1,010 646 
Run time 492.063 s 310.233 s 

 

The building control and PV control are at different timescales. The building loads, such HVAC units, are 
usually optimized and controlled for on/off status at 10 min time steps. The PV inverter can be controlled 
every minute or less. To mimic the online applications, the proposed distributed algorithm runs every 
minute to control the PV inverters for voltage regulation and loss reduction, and at every 10 min, the team 
ran the optimal building control model, which is based on previous work [131]. The control logic is 
shown in Figure A-44. The building control aims to optimally control the on/off status of the HVAC units 
to track the variations of PV generations while meeting the temperature and comfort constraints. At each 
10 min time step, the building control model optimizes and changes the shape of the total load curve at 
each node. Then, for every minute, the distributed optimal PV control algorithm optimizes the active and 
reactive power of each PV inverter for real-time voltage regulation and OPF. The optimization results are 
passed to OpenDSS [53] for simulation. 

 
Figure A-44. The coordination between distributed optimal PV control and building  

control in distribution networks. 

Then, the team wanted to validate the effectiveness of the optimization model and the modified ADMM 
algorithm in optimal PV control by comparing them with OpenDSS simulations. The proposed model was 
implemented in MATLAB and solved using CPLEX [57] on a personal computer. A modified IEEE 33 
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node case [58] with 32 PVs were used for case studies. Second, the team conducted a comparative study 
to demonstrate the advantage of the proposed distributed optimal PV control over the traditional constant 
PF control. Third, the team conducted a comparative study to demonstrate the benefits of coordinating the 
optimal PV control and building control through time series simulations. 

Test Case: 

As shown in Figure A-45, there are 32 PVs in the IEEE 33 node testing system. The PV inverter capacity 
is 92 kVA. The team selected 11:00–15:00 as the study period and conducted distributed optimization for 
PV control for every minute. The PV generations and load curve are shown in Figures A-46 and A-47, 
respectively. As shown in Figure A-46, at 11:40, there was a significant drop of PV generations due to the 
cloud movement. 

 
Figure A-45. IEEE 33 node testing system. 

  

Figure A-46. Multipliers of PV generations. Figure A-47. Load curve. 

 

Comparison with OpenDSS simulation results:  

The results of the proposed distribution optimization model and modified ADMM algorithm were 
compared with those of the OpenDSS simulation to validate effectiveness and accuracy. The comparison 
results of nodal voltage and active/reactive power flow are shown in Figure A-48. In these figures, Vo is 
the result of OpenDSS, and Vd is the result of ADMM. The average errors were as follows: active power 
line flow was 0.5%, reactive power line flow was 1.17%, and nodal voltage was 2.9519e-3%. The 
proposed model and algorithm cannot be concluded to be effective and accurate in distribution system 
optimization. 
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Figure A-48. Comparison between the proposed model and OpenDSS. 

Comparison with constant PF control: 

Then, the team compared the results of the proposed optimal PV control and the traditional constant PF 
control. The two cases were designed as follows: 

• Case 1: Constant PF control. The PF is set to 0.95. 
• Case 2: Modified ADMM-based distributed optimal PV control. a = 1.8 in the over-relaxed ADMM, 

and adaptive penalty method is used; the maximum number of iterations is set to 900. 

The comparison results are shown in Figure A-49. The simulation results show that in Case 2, the 
network loss and voltage deviations are smaller, indicating that the proposed model and algorithm are 
beneficial to secure and economic system operations. 



 

 

 
Figure A-49. Comparison between the proposed method and constant PF control. 

Comparison between with and without building control:  

To evaluate the benefits of PV-building coordination, we compare the results in the following two cases.  

• Case 1: Distributed optimal PV control without building control. 
• Case 2: Distributed optimal PV control in coordination with building control. 

The simulation results shown in Figure A-50 indicate that the coordination between PV control and 
building control can help improve the voltage profiles and reduce total network loss compared with 
optimal PV control only. 



 

 

 
Figure A-50. Comparison of distributed optimal PV control with and without coordination with building 

control. 

In summary, this work developed a modified ADMM-based algorithm to accelerate the convergence of 
distributed optimization for PV control. Through simulation and case studies, the proposed model and 
algorithm were demonstrated to be effective and efficient in the applications of voltage regulations and 
loss reduction in distribution systems. Additionally, this work designed a mechanism to coordinate the 
building control with the distributed PV control at different timescales. The simulation results 
demonstrate that the coordination between PV and building controls can further improve the voltage 
profile and reduce network losses. 

A.5 BUILDING MODEL PARAMETERS ESTIMATION 

System identification is crucial in a specific class of adaptive controllers in which the real-time 
identification of the underlying system is required [132]. One common approach to system identification 
in real-time is the class of prediction-error methods, but these are not easily extendable to multiple-input 
and multiple-output (MIMO) systems. Subspace identification (SID) methods mainly emerged as an 
alternative [133] approach for estimating MIMO systems. Thus, the team used an SID method.  

The dataset used for identification refers to the real-life data collected starting on Tuesday, August 1, 
2017 at 10:48:57 a.m. for 16,200 measurement values in Fountain City, Tennessee. The data were 
collected once every 15 s. The first input is the HVAC state; it takes the discrete values {0, 1, 2}, where 
each value corresponds to the cooling power of the compressor. Accordingly, 0 reflects no cooling 



 

 

required (0 W), 1 reflects stage-one cooling (4,200 W), and 2 reflects stage-two cooling (6,800 W). The 
second input considered is the external outdoor temperature, and the unit used is degrees Fahrenheit. 
Based on the external temperature and indoor temperature, the HVAC operates at different states with an 
objective to maintain the indoor temperature within a specified band. The output is the resulting measured 
indoor temperature. The two inputs and the output for a typical summer day are shown in Figure A-51. 

 

Figure A-51. Inputs and output of the HVAC model system. 

If only the first input is considered, then the dataset of just one input and one output is not sufficiently 
informative to perform system identification. To understand this more clearly, consider the batch of data 
around the 2,000th time step. For a constant HVAC state, the output seems to be randomly changing. 
Having external temperature as a second input provides more insight into the system behavior. Hence, the 
system is modeled as a two-input, one-output system (i.e., MIMO system), and an SID algorithm is 
employed. 

A batch of measurement values from the collected dataset is preprocessed and used to obtain an estimate 
of the underlying system. The algorithm used to obtain the estimated model is the nuclear norm-based 
SID (N2SID) that was formulated in Verhaegen and Hansson [134]. Traditional SID methods can be 
divided into three distinct steps [135]: (1) estimate high-order models, (2) reduce estimated models to 
lower dimensional subspace, and (3) realize a state-space system from the lower dimensional subspace. 
Unlike traditional SID methods, N2SID combines the first two steps by embedding the rank minimization 
criterion (step 2) directly into the identification problem. Essentially, system order estimation is 
automated. This step of rank minimization is an NP-hard problem, and hence nuclear norm is used as a 
heuristic for rank minimization [136]. Employing nuclear norm for rank minimization is attractive 
primarily because it forms a convex envelope on the rank function, rendering the identification problem a 
convex optimization problem. 

To quantify the trade-off between model order reduction and accuracy, a regularization parameter λ is 
employed in N2SID. The other parameter employed in N2SID that can be varied is the length of the 
dataset, Nide. For this dataset, the team used a batch of 200 measurement values (Nide = 200) and estimated 
a model for 15 different values of λ log-spaced between 10 and 1,000. The resulting order of the 
estimated models and the corresponding accuracies are shown in Figure A-52. 



 

 

 

Figure A-52. Evaluating multiple estimated models, λ is the regularization parameter of N2SID. 

 

For λ = 100, N2SID estimated a fourth-order model that had the highest accuracy (close to 90%). The 
output of this estimated model is compared with the measured output (indoor temperature) in 
Figure A-53. For the simulation of the estimated model, zero initial state is used, and thus the output starts 
at a different value from the measured output. Within a few time steps, the behavior of the measured 
output is reflected in the output of the estimated model. 

 

Figure A-53. Accuracy analysis of the estimated model. 

 

The estimated model was accurate up to almost 90% for the selected batch of the dataset, which was a 
batch of 200 values. However, if the same model is validated with a larger dataset, then the accuracy of 
the model deteriorates (Figure A-54). This suggests that a constant simple fourth-order model is not 
sufficiently comprehensive to capture all the changing dynamics and uncertainties to which the HVAC 
system might be subjected for a longer period. 



 

 

 

Figure A-54. Validating the entire dataset using a single model. 

One way to tackle this problem is to obtain a high-order model that considers the HVAC system 
dynamics and includes all possible uncertainties. The resulting complicated model still might not be 
sufficiently exhaustive to cover all feasible scenarios. The other solution is to locally estimate the system 
every few time steps. The frequency of recursive estimation could be monitored through a criterion, such 
as if the accuracy of the previously estimated model drops below a certain threshold, and then system 
identification could be performed. Moreover, the frequency can be adjusted based on the computational 
constraints that will be imposed in the real-life implementation. 

As a demonstration, the system is recursively identified at every time step by using the RN2SID 
algorithm [137], which is a recursive version of N2SID. The primary feature of RN2SID is that 
identification at any time step is performed by considering the past system dynamics. The corresponding 
results are shown in Figure A-55. The accuracy usually remains above or around 80% and seldom drops 
below 60%. The order of the estimated model is shown in Figure A-56. Although the estimated models 
are usually around order 3, the order is never above 4. This implies that a recursively estimated model can 
efficiently capture the local dynamics in a fourth-order model. 

  

Figure A-55. Accuracy analysis of the model 
estimated with RN2SID. 

Figure A-56. Order of the model estimated with 
RN2SID. 

 



 

 

The simulation results presented in Figures A-52 through A-56 are for one-zone HVAC system. The same 
N2SID method is also tested for a multizone (i.e., four-zone) HVAC system. The dataset employed in this 
test corresponds to the measurements between August 10, 00:02, and September 3, 00:02, obtained every 
sampling interval 5 min from the same CBC church in Knoxville, Tennessee. The estimated model that 
resulted from system identification is a fifth-order state-space model that is validated through self- and 
cross-validation. The outputs obtained during self-validation are shown in Figure A-57(a), and the 
corresponding inputs employed are shown in Figure A-57(b). The self-validation VAF (accuracy) 
obtained is 80.75%. Cross-validation is performed on the next 20.83 h of data, and the results are shown 
in Figures A-58(a)–(b). The cross-validation VAF (accuracy) obtained is 50.57%. The results are 
summarized in Table A-4. 

 
 (a)  (b) 

Figure A-57. (a) Self-validation and (b) inputs given to the plant and the estimated model. 

 
 (a)  (b) 

Figure A-58. (a) Cross-validation and (b) inputs given to the plant and the estimated model. 

  



 

 

Table A-4. Evaluation of the accuracy of the estimated model. 

Error Self-validation 
(°F) 

Cross-validation 
(°F) 

RMSE 0.2779 0.4470 
MAE 0.2157 0.3466 

Maximum 
error 1.4852 3.2718 

 

Results showed that highly accurate thermal building models can be estimated by using the SID 
mechanism. However, this mechanism requires many computations that might slow its implementation 
and deployment processes. Thus, the team proposes a much simpler estimation mechanism, which is 
based on least squares (LS) methods [138] in which the indoor room temperatures are estimated by 
solving for x in Y = Ax, where Y and A contain previous measurement values, and x is the vector of 
unknown coefficients. The estimated building model parameters are used to predict indoor temperatures 
that are needed for the developed building load controller to provide improved performance. Figure A-59 
illustrates the predicted indoor temperatures for different prediction horizons using LS mechanism. High 
prediction accuracy was achieved for short-term prediction horizons (less than 10 min), and the accuracy 
deteriorates for longer prediction horizons. Figure A-60 illustrates the root mean square error (RMSE) of 
indoor temperature prediction for different prediction horizons using LS and compares it with the SID 
method. The SID method provides higher accuracy but requires larger computations. 

  

Figure A-59. RMSE of indoor temperature 
prediction for different prediction horizons using LS 

and compared with SID. 

Figure A-60. Prediction of indoor temperatures using 
LS for several prediction horizons: 15 s, 1 min, 

5 mins, 10 mins, 30 mins, and 60 mins. 

 

A.6 PV POWER FORECAST 

In summary, the team reviewed the HVAC system dataset and decided to employ an SID algorithm 
accordingly. After obtaining satisfactory results for a batch of data, the team employed the estimated 
model to describe the HVAC dynamics. Because of uncertainties associated with the HVAC system, the 
team concluded that resorting to recursive identification was more appropriate, and the results were 
observed to be satisfactory. 



 

 

The real-time prediction of PV power output is necessary for overcoming the temporal variability 
challenges of solar radiation. Previous attempts to model solar irradiance can be classified into three 
general types [139]: physical, frequency distribution, and stochastic. The physical approach studies the 
physical processes that occur in the atmosphere and that influence solar radiation. It is exclusively based 
on physical considerations, allowing that the radiant energy exchanges occur within the earth-atmosphere 
system. This approach dictates models that account for the estimated solar irradiation at the ground in 
terms of a certain number of physical parameters, such as water vapor content, dust, aerosols, and clouds 
and cloud types [140]. For each place and period of the year, the frequency distribution approach provides 
a descriptive statistical analysis of the main quantities of interest, such as hourly or daily global, diffuse or 
beam solar irradiation, and statistical modeling of the observed empirical frequency distributions. The 
stochastic modeling approach is more flexible and can incorporate any nondeterministic influences, such 
as cloud movement and pollution levels, into the model, as well as any nonstandard features, such as 
shading specific to a particular location [139]. Thus, stochastic modeling can capture the intrinsically 
nondeterministic (i.e., uncertain) nature of irradiance fluctuations. For example, understanding the sub-
minute behavior of PV generation will be necessary for developing realistic predictive models (i.e., 
controllers) for building HVAC systems. 

Since the last decade, stochastic time series forecasting has been applied to different applications with 
higher degrees of success. A time series is a collection of time-ordered observations 𝑥;, each being 
recorded at a specific time t (period) [141]. Time series can appear in a wide set of domains, such as 
finance, production, or control. As a first approximation, a time series model assumes that past patterns 
will occur in the future. A time series model could be used to provide synthetic time series statistically 
similar to the original one. Time series modeling begins with the selection of a suitable mathematical 
model or class of models for the data. Then, future values of measurements [142] can be predicted. 
Moreover, time series methods have been applied to forecast solar PV power in several other works [139, 
143–145]. These works provide accurate models and predictions that capture the hourly, daily, and 
seasonal solar PV trends.  

An AR model is a type of random process that is often used to model and predict various types of natural 
phenomena. A typical AR process can be written as: 

𝑋(𝑘) = ∑ 𝛼.𝑋(𝑘 − 𝑖) + 𝜖(𝑘)
<
.*+ ,                                       (A-38) 

where 𝑋(𝑘) is a time series, 𝛼+, … . , 𝛼< are parameters of the model corresponding to 𝑋(𝑘), and 𝜖(𝑘) 
represents the uncertain term or fluctuations modeled as white noise at time k. p is the order of the AR 
model that represents how many past measurements upon which the current one depends. If 𝑋(𝑘) is used 
to represent the solar PV power metrics, then the future metrics can be predicted by Eq. (A-38). Before 
prediction, the parameters in Eq. (A-38) must be estimated based on the past metrics by using the LS 
mechanism. After model parameters are estimated, one-step prediction of the metrics can be computed 
by: 

𝑋V(𝑘 + 1) = ∑ 𝛼.𝑋(𝑘 + 1 − 𝑖)
<
.*+ .    (A-39) 

The AR integrated moving average (MA) (ARIMA) time series model is an extension of the AR model 
that comprises the AR model, integrating part 1, and the MA model. ARIMA is considered a good 
prediction model for forecasting the future values of provided time series with stable input variables. The 
ARIMA model refers to (p;i;q), where p represents the order of the AR model, i represents the order of 
the differencing part, and q represents the order of the MA model. A typical ARIMA (1,1,1) model can be 
expressed as: 

𝑧; 	= 𝛼 + ∅𝑧;5+ + 𝜃𝜖;5+ + 𝜖;     (A-40) 



 

 

where 𝑧; is the difference between the current value 𝑋(𝑘) and the previous value 𝑋(𝑘 − 1). The (1,1,1) in 
the equation are the autoregressive (𝑧;), differencing part, and MA (𝜖;) lag orders, respectively. The 
intuitive understanding of Eq. (A-40) is straightforward. The current value of the time series 𝑧; will 
depend on the past value of the series 𝑧;5+ and will correct itself to the error made in the last time period 
𝜖;5+. The initial differencing step that corresponds to the “integrated” part of the model is applied to 
eliminate any nonstationarity in the original data 𝑋(𝑘). The standard statistical methodology to construct 
AR and ARIMA models includes the steps listed in Table A-5. A detailed explanation for each step can 
be found in Ji and Chee [142]. This stochastic framework is selected to predict PV production and avoid 
requiring exogenous influential features, namely the cloud cover and temperature. 

Table A-5. The standard statistical methodology to construct AR and ARIMA models. 

Step number Task 
Step 0 A class of models is formulated, assuming certain hypotheses. 
Step 1 A model is identified for the series considered. 
Step 2 The parameters of the model are estimated. 

Step 3 If the hypotheses of the model are validated, then the procedure continues in 
Step 4; otherwise, the procedure continues in Step 1 to refine the model. 

Step 4 The model is used to forecast. 
 

The team tested the prediction algorithms on 12 month measurement of PV power output data collected 
from 13 kW PV panel at Distributed Energy Communications and Controls lab. The PV power data are 
downsampled to 10 min intervals to accommodate the controller time steps, which are every 10 min.  

Figures A-61 and A-62 demonstrate the performance of the AR(2) and ARIMA(2,1,2) prediction 
algorithms acting on real solar PV power output data for a particular summer. The PV power was 
predicted with high accuracy. The RMSE for the AR(2) model is 775, and the RMSE for the 
ARIMA(2,1,2) model is 759. Because both models provide comparable performance, the team plans to 
use the simpler one, AR(2), in the implementation phase. 

  

Figure A-61. Performance of PV power output 
prediction using AR(2). 

Figure A-62. Performance of PV power output 
prediction using ARIMA(2,1,2). 
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A.7 ADAPTIVE BUILDING LOAD CONTROL (MFC) 

A.7.1 MFC Development 

This section discusses how the team used the MFC algorithm developed in Fliess and Join [146] as an 
alternative control strategy to MPC to allow most of the generated PV power to be consumed locally by 
building loads while maintaining occupant comfort. MPC methodologies are designed to handle 
constraints efficiently, but they are associated with relatively high computational cost. In contrast, MFC 
uses an ultra-local model (i.e., approximation) of the system that is estimated in real time. It circumvents 
the daunting task of deriving reliable building models and accounts for all the uncertainties and unknown 
weather disturbances and changes in occupancy pattern [147–150]. Thus, it is computationally efficient 
and easily deployable on small, embedded devices, and it can be implemented in real time or near-real 
time.  

Like MPC strategies, the objective is to employ all the generated solar PV energy to control the indoor 
temperatures of the buildings. Here, the generated PV energy is accessible by all the considered buildings 
because the energy is divided among the community. A comfort band was defined for the desirable indoor 
temperatures, and the team’s goal was to consume most of the generated energy without jeopardizing 
occupant comfort. This would minimize the impact on the grid, reduce the size of storage devices, and 
increase solar PV penetration levels. 

As described in Eqs. (17)–(18), the thermal HVAC system is modeled as a single-input and single-output 
linear state-space representation. This HVAC model can be approximated by an ultra-local model as: 

�̇� = 𝐹 + 𝛼𝑢,      (A-41) 

where u and y are the input and output of the system, respectively, and F describes the poorly known or 
unknown parts of the system. The parameter α corrects the difference in the magnitudes of the input and 
output. F is approximated by a piecewise constant function 𝜑 that is given as: 

𝜑 = 5=
9% ∫ [(𝐿 − 2𝜎)𝑦(𝜎) + 𝛼𝜎(𝐿 − 𝜎)𝑈(𝜎)]𝑑𝜎;

;59 .   (A-42) 

𝜑 is estimated by using the measurements of the system obtained in the last L seconds, and F is 
continuously updated accordingly. Using the latest F, the intelligent-proportional control law is given by: 

𝑢 = − >5?̇∗4A'(?5?∗)
D

.     (A-43) 

Here, 𝑦∗ is the desired reference trajectory, and 𝐾< is the proportional gain. Combining 7 and 9 provides 
the error dynamics: 

 �̇� + 𝐾<𝑒 = 0, (A-44) 

where 𝑒 = 𝑦 − 𝑦∗ is the tracking error. The value of 𝐾< is obtained from the solution of the differential 
equation in Eq. (A-44) and is updated at every time step. Therefore, the only parameters that must be 
manually set are 𝛼 and L, making the control design straightforward. The MFC method uses an ultra-local 
model that is estimated from the input and output measurements. Therefore, the state-space HVAC model 
is only used to simulate the building conditions and is not used in the design of the controller. 

The objective is to control the indoor temperatures of N number of buildings by using the generated solar 
PV energy. This implies that the generated energy is divided among all N buildings. Let the generated 



 

 

solar PV energy be denoted as E. The constraint of employing all of the generated energy can be 
mathematically expressed as: 

𝐸(𝑡) − 𝜀 ≤ ∑ 𝐸F(𝑡))
F*+ ≤ 𝐸(𝑡) + 𝜀,    (A-45) 

where 𝐸F(𝑡) is the energy consumed by the kth building at time t, and 𝜀 is the permissible tolerance in the 
tracking error. From the dynamics of the building HVAC model, 𝐸F is given as 𝐸F= 3.5uk, where uk is the 
control input of the kth building HVAC system. Moreover, because the HVAC systems can only be 
turned on or off, there is a constraint on the control input: 𝑢 = {0,1}, where 0 and 1 correspond to the 
HVAC system turned off and on, respectively. Because the team’s focus included fully employing the 
generated PV energy, the analysis was limited to during the day when there is sufficient solar energy. 
Accordingly, when the HVAC system is turned off, the indoor temperature of the building increases, and 
when the HVAC system is turned on the building temperature decreases. The HVAC system considered 
here operates only in cooling mode. 

The methodology to achieve the aforementioned objective is sequentially summarized in the following 
steps: 

1. For each building k at each time step t, feed the previous L seconds of measurements to the MFC; that 
is, uk(t + 1) = MFC(uk(t - L): t); yk((t - L): t)). 

2. Calculate the corresponding energy that will be consumed with uk(t + 1) as the input; that is, 
Ek(t + 1) = 3.5 uk(t + 1). 

3. Check whether the total energy to be consumed satisfies or violates the constraint Eq. (A-45). 

4. If the constraint in Eq. (A-45) is satisfied, then the control input to the kth building is uk(t + 1); round 
off to satisfy {0,1}. 

5. If the constraint in Eq. (A-45) is violated, then decide the buildings that most require cooling based on 
the value of uk(t + 1). For example, if u29 = 0.9 and u87 = 0.7, then the 29th building will be turned on 
at this time step.  

6. The previous step is performed until all the available energy is allotted. 

As a further note to step 5, consider the case in which there are multiple buildings (N1 number of 
buildings) that have the same value of uk(t + 1). Because the generated energy is not enough to cool all N1 
buildings, N2 < N1 number of buildings are cooled, and the remainder are buffered for the next time step. 
Here, N2 corresponds to the number of buildings that can be cooled by using the generated energy. When 
the available energy is more than the required energy, the aforementioned conflict resolution technique is 
mirrored and employed. 

A.7.2 Performance Analysis 

In this section, 𝛼 = 1, L = 3,600 s, the sampling time is 600 s, and 𝜀 is set as 10% of E. The external 
temperature and solar irradiance measurements are selected for a typical summer day in July 2017 in 
Knoxville, Tennessee. N = 100 nonidentical buildings, starting at different initial conditions. To generate 
N nonidentical buildings, the team sampled from a normal distribution in which the state-space model 
parameters are considered as the mean. N values for each state-space parameter are sampled from the 
normal distributions, and each set is used as a model for the building. The MFC method is used in 
combination with the reviewed methodology to control the indoor temperatures while employing all the 



 

 

generated energy. Because the proportional gain 𝐾< is automatically computed based on the tracking error 
of the indoor temperature, it does not need to be manually tuned, even when the models are different. The 
desired indoor temperature is 23°C, and the comfort band is defined as 23 ± 1.5 °C. The indoor 
temperatures obtained in the 100 buildings with MFC are shown in Figure A-63(a), and the temperatures 
obtained using MPC under the same conditions as in MFC are shown in Figure A-63(b). The 
corresponding total energy consumed at each time step for both methods is compared in Figure A-63(c). 

   
(a) (b) (c) 

Figure A-63. Indoor temperatures obtained by using (a) MFC, (b) MPC, and (c) total energy consumption by 
100 buildings obtained with MFC and MPC vs. generated PV energy. 

Although MPC strictly maintains the indoor temperatures within the comfort band, the energy consumed 
is higher than the generated energy for a brief time. On the other hand, although MFC uses the generated 
energy within permissible limits, the indoor temperatures for a few buildings deviate from the comfort 
band by less than 0.5°C for a brief time. This is because the control algorithm implemented with MPC 
imposes hard constraints on maintaining the indoor temperature, whereas MFC imposes hard constraint 
on employing the generated energy within permissible limits. If following the energy constraint is more 
important than maintaining the indoor temperature, then the MPC algorithm can be easily reconfigured in 
a straightforward manner, whereas MFC is not as flexible with changing the constraints. The results are 
summarized in Table A-6 using different tracking error metrics. 

Table A-6. Comparison of MFC and MPC using tracking error metrics. 

Tracking error metric 
Indoor temperature (°C) Energy consumption (kW) 

MFC MPC MFC MPC 
RMSE 0.60 0.82 3.64 20.94 
MAE 0.49 0.74 2.97 8.22 

Maximum error 2.11 1.50 9.24 82.17 
 

The duty cycle and number of HVAC state switching (from the on state to the off state or from the off 
state to the on state) for this simulation scenario for MFC and MPC are illustrated in Figures A-64 and 
A-65, respectively. These results are summarized in Table A-7. For this simulation scenario, MFC 
provides a duty cycle comparable with MPC with a smaller number of HVAC state switching. 



 

 

  
(a) (b) 

Figure A-64. The duty cycles for 100 HVAC systems using (a) MFC and (b) MPC. 

  
(a) (b) 

Figure A-65. The total number of state switching for 100 HVAC systems using (a) MFC and (b) MPC. 

Table A-7. Comparison of MFC and MPC in terms of HVAC duty cycle and number of state switching. 

Amount 
Duty cycle (%) Number of switching 

MFC MPC MFC MPC 
Minimum 15.09 18.87 6 13 
Average 17.81 20.60 11 18 

Maximum 22.64 22.64 16 22 
 

Because of the comparable performance of MFC compared with MPC but with much less computational 
requirements, the team used the MFC strategy as a backup plan in the implementation and deployment 
phase, especially when the computational complexity was not feasible (i.e., there was a scalability issue). 



 

 

A.7.3 Stability Analysis 

The MFC system is asymptotically stable for continuous-time input. The asymptotic stability of the 
system is given under the conditions that the control input from Eq. (A-43) is fed to the system. However, 
in the case of controlling building indoor temperature with a HVAC unit that can be either only turned on 
or off, there are limitations on the control input. Therefore, the team needed to investigate the stability 
conditions for the case in which the control input is a discrete value. The constraints on the control input 
are embedded as follows. Let 𝑢 be the value obtained from Eq. (A-43) and 𝑢G be the control input 
actually fed to the system in Eq. (A-41). 𝑢G is obtained from 𝑢 as: 

 𝑢G =	i
0							𝑖𝑓	𝑢 < 0.5
1							𝑖𝑓	𝑢 ≥ 0.5. (A-46) 

Because 𝑢G is supplied to the system, Eq. (A-41) will be transformed as: 

 �̇� = 	𝐹 + 𝛼	𝑢G. (A-47) 

Case 1: 𝑢 < 0.5:  

⇒
−1
𝛼
	m𝐹 −	 �̇�∗ + 𝐾<𝑒n < 0.5 

Because 𝑢G = 0 in this case, Eq. (A-47) gives �̇� = 𝐹: 

⇒
−1
𝛼
	m�̇� −	 �̇�∗ + 𝐾<𝑒n < 0.5 

⇒
−1
𝛼
	m�̇� + 𝐾<𝑒n < 0.5 

 ⇒ �̇� + 𝐾<𝑒 > −0.5𝛼. (A-48) 

Case 2: 𝑢 ≥ 0.5 

⇒
−1
𝛼
	m𝐹 −	 �̇�∗ + 𝐾<𝑒n ≥ 0.5 

Because 𝑢G = 0 in this case, Eq. (A-47) gives �̇� = 𝐹 + 𝛼: 

⇒
−1
𝛼
	m�̇� − 𝛼 −	 �̇�∗ + 𝐾<𝑒n ≥ 0.5 

⇒ −m�̇� + 𝐾<𝑒n + 𝛼 ≥ 0.5𝛼 
 ⇒ �̇� + 𝐾<𝑒 ≤ 0.5𝛼. (A-49) 

Combining Eqs. (A-48) and (A-49) results in: 

 −0.5𝛼 < �̇� + 𝐾<𝑒 ≤ 0.5𝛼 (A-50) 

Therefore, when the control input is continuous, �̇� + 𝐾<𝑒 = 0. The solution of this differential equation 
is: 

 𝑒(𝑡) = 𝑒(𝑡6)	exp	(−𝐾<(𝑡 − 𝑡6)), (A-51) 



 

 

where exp	(×) is the exponential function, and 𝑡6 is the initial time. Without loss of generality, let 𝑡6 = 0. 
From Eq. (A-51), the system is asymptotically stable when the control input is unconstrained. When the 
control input is constrained, as in Eq. (A-46), the error dynamics are as in Eq. (A-50). To further 
investigate the stability conditions for constrained control input, the differential inequality in Eq. (A-50) 
must be solved. The team employed the results of the following lemma [151] to obtain the solution to 
Eq. (A-50). 

Lemma: Let 𝑥6, 𝑦6 ∈ 	ℝ,			𝐼 = 	 [𝑥6, ∞},			𝑎, 𝑏 ∈ 𝐶(𝐼), 𝑦 ∈ 𝐶+(𝐼) and:  

 �̇� ≤ 𝑎(𝑥)	𝑦(𝑥) + 𝑏(𝑥),										∀𝑥 ≥ 𝑥6, 𝑦(𝑥6) = 𝑦6. (A-52) 

Then the following holds: 

 𝑦(𝑥) ≤ 𝑦6 		exp 7∫ 𝑎(𝑡)𝑑𝑡1
1(

< + ∫ 𝑏(𝑠) exp9∫ 𝑎(𝑡)𝑑𝑡1
H : 𝑑𝑠1

1(
,				∀𝑥 ≥ 𝑥6. (A-53) 

If the converse holds in Eq. (A-52), then the converse holds in Eq. (A-53) also. Consider the right-hand 
part of Eq. (A-50): 

�̇�(𝑡) + 𝐾<𝑒(𝑡) ≤ 0.5𝛼 
⇒ �̇�(𝑡) ≤ −𝐾<𝑒(𝑡) + 0.5𝛼. 

Using the results of the lemma, the team obtained: 

𝑒(𝑡) ≤ 𝑒(0) exp{| −𝐾<𝑑𝜏
;

6
} +| 0.5𝛼 exp(| −𝐾<𝑑𝜏

;

H
)𝑑𝑠

;

6
 

⇒ 𝑒(𝑡) ≤ 𝑒(0) exp9−𝐾<𝑡: + | 0.5𝛼 exp(−𝐾<(𝑡 − 𝑠))𝑑𝑠
;

6
 

⇒ 𝑒(𝑡) ≤ 𝑒(0) exp9−𝐾<𝑡: +
0.5𝛼
𝐾<

exp9−𝐾<𝑡: [exp9𝐾<𝑡: − 1] 

 ⇒ 𝑒(𝑡) ≤ 𝑒(0) exp9−𝐾<𝑡: +
6.JD
A'

[1 − exp9−𝐾<𝑡:]. (A-54) 

Similarly, consider the left-hand part of Eq. (A-50): 

−0.5𝛼 < 	 �̇�(𝑡) + 𝐾<𝑒(𝑡) 
⇒ �̇�(𝑡) > −𝐾<𝑒(𝑡) − 0.5𝛼. 

Using the results of the lemma, the team obtained: 

𝑒(𝑡) > 𝑒(0) exp{| −𝐾<𝑑𝜏
;

6
} −| 0.5𝛼 exp(| −𝐾<𝑑𝜏

;

H
)𝑑𝑠

;

6
 

 ⇒ 𝑒(𝑡) > 𝑒(0) exp9−𝐾<𝑡: −
6.JD
A'

[1 − exp9−𝐾<𝑡:]. (A-55) 

Combining Eqs. (A-54) and (A-55), the error dynamics for the case when the control input is constrained 
as in Eq. (A-46) is given by: 

𝑒(0) exp9−𝐾<𝑡: −
6.JD
A'

m1 − exp9−𝐾<𝑡:n < 𝑒(𝑡) ≤ 𝑒(0) exp9−𝐾<𝑡: +
6.JD
A'

m1 − exp9−𝐾<𝑡:n (A-56) 



 

 

By comparing Eq. (A-56) with the error dynamics associated with unconstrained control input, that is:   

 𝑒(𝑡) = 𝑒(0)	exp9−𝐾<𝑡:, (A-57) 

it can be observed that Eq. (A-56) is within ±	6.JD
A'

m1 − exp9−𝐾<𝑡:n of Eq. (A-50). As 𝑡 → ∞, 

m1 − exp9−𝐾<𝑡:n → 1. Therefore, even when the control input is constrained, the error will be within 
±	6.JD

A'
 of the error obtained with unconstrained input. As noted previously, MFC leads to an 

asymptotically stable system when the control input is unconstrained. Because the error in the case of 
unconstrained control input is within a finite band of asymptotically decaying error, the team concluded 
that MFC design leads to a stable controlled system, even when the control input is constrained.  

To verify the stability equations experimentally, the MFC is designed to control the indoor air 
temperature in a building. The building HVAC model employed for simulations is given as: 

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘) + 𝐺𝑤(𝑘) 
 𝑦(𝑘) = 𝐶𝑥(𝑘) + 𝐷𝑢(𝑘). (A-58) 

Here, 𝑢, 𝑦 ∈ ℝ are the input to the building HVAC and indoor air temperature, respectively; 𝑤 ∈ ℝ8 is 
the disturbance; and 𝑥 ∈ ℝ is the state of the system. It is a first-order system, and the disturbances 
considered are external temperature and solar irradiance. MFC is employed to maintain the indoor air 
temperature at a desired set point. Simulations are performed for two cases: unconstrained control input 
and control input constrained, as in Eq. (A-46). Figure A-66 shows the error in indoor air temperature 
obtained in these two cases. The blue line represents the error obtained when the control input is 
unconstrained. Although the blue line is theoretically expected to be asymptotically decaying, according 
to Eq. (A-57), there is a fluctuating decay. This is a consequence of estimation error (i.e., 𝜙 ≠ 	𝐹). 
However, the pink line, which corresponds to the error obtained when the control input is constrained, is 
within ±	6.JD

A'
 of the blue line. This band is marked by dotted red lines. The corresponding control effort 

in both the cases is shown in Figure A-67(a), and the obtained indoor air temperatures are shown in 
Figure A-67(b). 

 
Figure A-66. Error in indoor air temperature for cases of  

unconstrained and constrained control input (°C). 



 

 

 

  
(a) (b) 

Figure A-67. (a) Control input for cases of unconstrained and constrained control input. (b) Indoor air 
temperature for cases of unconstrained and constrained control input. 

A.7.4 Generalization of MFC to Different Types of Loads 

The problem of allocating generated PV power to control the HVAC units of the same power load of N 
number of buildings was handled with in the previous sections and was published in Telsang et al. [148] 
and Bara et al. [149]. This section considers a combination of residential and commercial buildings 
equipped with HVAC units of different power ratings. The precise problem considered is to allocate the 
generated solar PV power among residential and commercial buildings while maintaining the indoor 
temperatures near the desired set point.  

The MFC methodology is employed to control the HVAC units. Because MFC generates a continuous 
value of the control input and an HVAC unit can be only on or off (𝑢 = {0,1}), the control input from 
MFC is rounded off and then fed to the HVAC unit. The details of implementation and stability 
constraints are described in the previous section and published in Telsang et al. [152]. Under this 
methodology, the obtained results are shown in Figures A-68 and A-69. The power rating is 2.25 kW for 
residential HVAC units and 4.5 kW for commercial HVAC units. In Figures A-68 and A-69, there was no 
PV power constraint on the amount of power that can be consumed by residential or commercial HVAC 
units. The power consumed is still shown as an additional insight into how much power would be “ideally 
required.” 
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Figure A-68. Indoor temperatures and control inputs for 100 residential and 100 commercial buildings 
controlled by using MFC without PV power constraint. 

 
Figure A-69. Total power consumed by 100 residential and 100 commercial buildings controlled by using 

MFC without PV power constraint and compared with the generated PV power. 

 

For simulation purposes, cooling with an HVAC unit is modeled as a first-order model with input 𝑢 =
{0,1}, which is the state of the HVAC unit (i.e., on or off), and indoor temperature is modeled as the 
output. The external disturbances considered are external temperature, denoted 𝑢K, and solar irradiation, 
denoted 𝑢H.  

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝐺+𝑢H + 𝐺8𝑢K 
 𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡). (A-59) 

For a residential model, the state-space model parameters are: 

 𝐴 = −1.1	 × 105J, 𝐵 = 	−0.0011, 𝐺1 = 	3.4 × 105J, 𝐺2 = 	0.0067, 𝐶 = 1, 𝐷 = 0, (A-60) 
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whereas for a commercial model, the state-space model parameters are: 

 𝐴 = −2.2 × 105J, 𝐵 = 	−0.0011, 𝐺1 = 	6.7 × 105J, 𝐺2 = 	0.0134, 𝐶 = 1, 𝐷 = 0. (A-61) 

Let the number of residential loads that were turned on at time 𝑡 be	𝑐+(𝑡) and the number of commercial 
loads that were turned on be 𝑐8(𝑡). For the MFC results in Figure A-68, the indoor temperatures are 
within the permissible bounds, and these would be the “ideal” number of units that we would turn on if 
there were no constraints on the PV power consumed. However, there is a PV power constraint. At time	𝑡, 
let the amount of available (i.e., generated) PV power be 𝑃𝑉(𝑡). 

The constraint is to employ all of 𝑃𝑉(𝑡) among the HVAC units of both the residential and commercial 
buildings while not straying from the desired set points. The definitions for some notations at time 𝑡 are 
provided as follows:  

• Amount of available power: 𝑃𝑉 
• Power rating of a residential HVAC unit: 𝑒G 
• Power rating of a commercial HVAC unit: 𝑒L 
• Total number of residential HVAC units: 𝐵𝑙𝑑G 
• Total number of commercial HVAC units: 𝐵𝑙𝑑L 
• Ideal number of residential HVAC units to be turned ON: 𝑐+ 
• Ideal number of commercial HVAC units to be turned ON: 𝑐8 
• [Variable] Number of residential HVAC units to turn ON: 𝑥+ 
• [Variable] Number of commercial HVAC units to turn ON: 𝑥8 

The power constraint can be mathematically expressed as: 

𝑒G𝑥+ + 𝑒L𝑥8 = 𝑃𝑉.	 (A-62) 

At a given time 𝑡, 𝑃𝑉, 𝑒G, and 𝑒L are constants. Hence, Eq. (A-62) represents a straight line, where 𝑥+ is 
one dimension and 𝑥8	is the second dimension. Because the ideal number of residential and commercial 
HVAC units to turn on is (𝑐+, 𝑐8) and the constraint is given by the straight line in Eq. (A-62), the optimal 
solution would be the orthogonal projection of (𝑐+, 𝑐8) onto the line in Eq. (A-62). This is shown in 
Figure A-70(a). 

  
(a) (b) 

Figure A-70. Projection of the ideal number of residential and commercial HVAC units to turn on (𝒄𝟏, 𝒄𝟐) 
onto the constraint line in Eq. (A-62). 



 

 

The analytical solution of the orthogonal projection of (𝑐+, 𝑐8)	onto the line in Eq. (A-62) is derived as 
follows. The coordinates of any point on the line in Eq. (A-62) are: 

7,&5K)1$
K*

	 , 𝑥8<,  (A-63) 

and the slope of the line in Eq. (A-62) is: 

𝑚+ =	−
K*
K)

. (A-64) 

So, the slope of a line connecting (𝑐+, 𝑐8) to any point in the line in Eq. (A-62) is described by: 

𝑚8 =	
1$5L$

+,-.)/$
.*

5L0
	.                      (A-65) 

Because the team was interested in the orthogonal projection of (𝑐+, 𝑐8) on the line in Eq. (A-62), the 
team considered the line orthogonal to the line in Eq. (A-62) that passes through (𝑐+, 𝑐8). Therefore, the 
team used of the property that the product of slopes of two orthogonal lines is -1 (i.e., 𝑚+. 𝑚8 =	−1). 
Substituting for the slopes gives: 

𝑥8 =	
K),&5K)K*L04K*$L$

K*$4K)$
,                                (A-66) 

and substituting this in the line in Eq. (A-62) gives: 

𝑥+ =	
K*$,&4K)$K*L05K)K*$L$

K*(K*$4K)$)
.                                    (A-67) 

Equations (A-66) and (A-67) yield the optimal solution for the number of HVAC units to be turned on in 
commercial and residential buildings, respectively. The optimal solution is denoted by (𝑠+, 𝑠8). 

Additional constraints on (𝑥+, 𝑥8) are: 

0 ≤ 	𝑥+ ≤ 𝐵𝑙𝑑G,             (A-68) 

0 ≤ 	𝑥8 ≤ 𝐵𝑙𝑑L.               (A-69) 

An example of the cases in which the optimal solution violates these constraints is shown in 
Figure A-70(b). The optimal case is denoted by (𝑠′+, 𝑠′8). However, 𝑠′8 < 0, which violates the constraint 
in Eq. (A-69). In such a case, the nearest solution that does not violate constraints in Eqs. (A-68) and 
(A-69) would be chosen. In this case, it would be 𝑥+ = 𝑠+M , 𝑥8 = 0. 

The final solution (optimal or near optimal) denoted by (𝑠+, 𝑠8) will be the final number of HVAC units 
that will be turned on at time 𝑡 in residential and commercial buildings. Given 𝑠+, the 𝑠+ number of 
buildings with the highest control input value as recommended by MFC will be turned on. Similarly, the 
𝑠8 number of commercial units are turned on. 

For simulation purposes, the following values were considered: 𝑒G = 2.25	𝑘𝑊, 𝑒L = 4.5	𝑘𝑊, and	𝐵𝑙𝑑G =
𝐵𝑙𝑑L = 100. The desired set point for temperature is 23°C, and the permissible band is ±1.5°C. The 
results obtained with the developed MFC methodology for handling the power constraint are presented in 
Figure A-71. After 3:00 p.m., the problem is infeasible because there is not enough generated PV power 
to support the cooling of all the buildings within the desired temperature bands. Moreover, the ideal 



 

 

available power is between 10:00 a.m. and 2:00 p.m. wherein both the temperature and power constraints 
are met. Because the power available is insufficient after 3:00 p.m., PV power constraint is not 
implemented after 3:00 p.m. The results obtained when the PV constraint is implemented until 3:00 p.m. 
and turned off after 3:00 p.m. are shown in Figure A-72.  

   

Figure A-71. Indoor temperatures, control inputs, and total power consumed for 100 residential and 
100 commercial buildings controlled by using MFC with PV power constraint. 

   

Figure A-72. Indoor temperatures, control inputs, and total power consumed for 100 residential and 
100 commercial buildings controlled by using MFC with PV power constraint. 

In the previous section, the power consumption of all the buildings was restricted to the available power. 
However, as seen in the simulation results, although the power constraint was impeccable, there were 
considerable indoor temperature deviations from the comfort band. Therefore, the power constraint can be 
relaxed as follows. The power consumed should be within a threshold band of the available power. 
Denote the threshold as 𝜖. Then, the relaxed PV power constraint is that the power consumed must be 
within ±	𝜖 of the available power. Mathematically, the power constraint in Eq. (A-62) will be relaxed as: 

𝑃𝑉 − 𝜖 ≤ 	𝑒G𝑥+ + 𝑒L𝑥8 ≤ 𝑃𝑉 + 𝜖	,                                              (A-70) 

𝑒G𝑥+ + 𝑒L𝑥8 = 𝑃𝑉 + 𝜖,                            (A-71) 

𝑒G𝑥+ + 𝑒L𝑥8 = 𝑃𝑉 − 𝜖.                            (A-72) 

This relaxation is implemented by finding the distance of (𝑐+, 𝑐8) to the lines in Eqs. (A-62), (A-71), and 
(72). Then, the line that corresponds to the shortest of the three distances will be closest to (𝑐+, 𝑐8), and 
hence the orthogonal projection of (𝑐+, 𝑐8) onto that line will be the final solution. The results under the 
relaxed PV constraint are shown in Figure A-73. Moreover, because the power available is insufficient 
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after 3:00 p.m., PV constraint is not implemented after 3:00 p.m. The temperature deviations under 
relaxed PV constraint are lesser than the results obtained under strict PV constraint. Also, the power 
consumed stays within the threshold of the available power. 

   

Figure A-73. Indoor temperatures, control inputs, and total power consumed for 100 residential and 
100 commercial buildings controlled by using MFC with PV power constraint. 

Next, the team considered the MFC problem under the scenario in which one kind of load should be 
prioritized over another. For example, if there is a constraint that during afternoons, it is more important 
for commercial building indoor temperatures to be within the temperature comfort band than it is for 
indoor temperatures in residential buildings, the team would assign a higher weight to commercial loads. 
Let the weight of the commercial load be 𝑤 ∈ [0,1], where a higher value of 𝑤 implies more importance 
on the commercial load and correspondingly less importance on the residential load. That is, the weight 
on the residential load would be 1 − 𝑤. For a given weight 𝑤, this problem is solved by using following 
steps (Figure A-74). 

1. Determine the corresponding angle of projection from 𝜃 = 𝑓(𝑤). 

2. Find the points (𝑥6, 𝑦6) on the power constraint line so that the angle between the line segment 
connecting (𝑥6, 𝑦6) and (𝑐+, 𝑐8) and the power constraint line is 𝜃. 

3. The coordinate (𝑥6, 𝑦6) would be optimal solution for a given weight. 

8 9 10 11 12 13 14 15 16 17

Time in hours

21

22

23

24

25

26

In
do

or
 te

m
p,

 d
eg

 C

Residential buildings = 100

8 9 10 11 12 13 14 15 16 17

Time in hours

0

0.2

0.4

0.6

0.8

1

C
on

tro
l i

np
ut

8 9 10 11 12 13 14 15 16 17
20

21

22

23

24

25

26

In
do

or
 te

m
pe

ra
tu

re

Commerical buildings = 100

8 9 10 11 12 13 14 15 16 17

Time in hours

0

0.2

0.4

0.6

0.8

1

C
on

tro
l i

np
ut

8 9 10 11 12 13 14 15 16 17

Time in hours

-100

0

100

200

300

400

500

600

700

Po
w

er
, k

W

Total Power consumed

Power consumed
PV



 

 

 
Figure A-74. Mapping importance weight to projection angle. 

Consider a piecewise-continuous function 𝑓: [0,1] → [𝜃-./, 𝜃-01] so that:  

 𝑓(0) = 𝜃-01, 𝑓 7+
8
< = N

8
, 𝑓(1) = 	𝜃-./. (A-73) 

Here, 𝜃-./ corresponds to the projection angle in the case of maximum importance on the indoor 
temperatures of commercial buildings, and 𝜃-01 corresponds to the case of least importance on 
commercial loads.  

For a given time 𝑡, for a computed (𝑐+, 𝑐8), and the power constraint line 𝑒G𝑥 + 𝑒L𝑦 = 𝑃𝑉, 𝜃-./ and 
𝜃-01 are shown in Figure A-74. The function 𝑓 is defined as: 

 𝑓(𝑤) = 	 i
(𝜋 − 2	𝜃-01)𝑤 + 𝜃-01 ,															𝑖𝑓	𝑤 ∈ [0, 0.5]
(2𝜃-./ − 𝜋)𝑤 − 𝜃-./ + 𝑝𝑖,								𝑖𝑓	𝑤 ∈ [0.5, 1]. (A-74) 

Let 𝜃+ be the angle made by the constraint line with x-axis. Then: 

tan 𝜃+ =	−
K*
K)
.	                         (A-75) 

Denote the line segment joining any point (𝑥, 𝑦) on the constraint line and the point (𝑐+, 𝑐8) by 𝑙(𝑥, 𝑦). 
Let 𝜃8 be the angle made by 𝑙 with the x-axis. Correspondingly, let 𝜃8-./ be the angle between 
𝑙(0, 𝑃𝑉/𝑒L) and the x-axis, and let 𝜃8-01 be the angle between 𝑙(𝑃𝑉/𝑒G , 0) and the x-axis. Ideally, the 
required power would be 𝑃𝑉GKO = 𝑐+𝑒G + 𝑐8𝑒L. Depending on whether 𝑃𝑉GKO − 𝑃𝑉 is positive or 
negative, the point (𝑐+, 𝑐8) will be above or below the line. Moreover, the wrapping of angles poses 
additional difficulty. Therefore, accounting for all possible scenarios, 𝜃-./ and 𝜃-01 are calculated as 
follows: 

 𝜃-./ = |𝜃+ − 𝜃8-./|. (A-76) 



 

 

Case 1: 𝑃𝑉GKO − 𝑃𝑉 ≥ 0: 

 𝜃-01 = i
|𝜃+ −	𝜃8-01|, 𝑖𝑓	𝜃8-01 > 0

|𝜋 − |𝜃8-01| − 𝜃+|, 𝑖𝑓	𝜃8-01 < 0, (A-77) 

 𝜃 = 𝑓(𝑤), (A-88) 

 𝑚 = tan(𝜃 + 𝜃+). (A-89) 

Case 2: 𝑃𝑉GKO − 𝑃𝑉 < 0: 

 𝜃-01 = |𝜃+ − 𝜃8-01|, (A-90) 

 𝜃 = 𝑓(𝑤), (A-91) 

 𝑚 = tan(𝜃+ − 𝜃). (A-92) 

Then, the coordinates 𝑥6, 𝑦6 are computed as follows: 

𝑥6 =
K)(L0-5L$)4,&

K*4K)-
,                                        (A-93) 

𝑦6 =
,&5K*1(

K)
                               (A-94) 

Simulations are carried with the developed strategy for 100 commercial and residential buildings each for 
a given generated power profile. Results are shown in Figures A-75 through A-77 for three different cases 
of weights: w = 0.15, 0.5, and 0.9, respectively. Note that w = 0.5 corresponds to equal importance on 
both commercial and residential loads, corresponding to the orthogonal projection of the point (𝑐+, 𝑐8) on 
the constraint line. The strategy is not implemented after 3:00 p.m. because the available power is much 
lesser than required, making the solution infeasible. In each of the three simulation cases of different 
weights, the consumed power is within the threshold of that available. On the other hand, the indoor 
temperatures of residential and commercial buildings stay within or deviate from the comfort band, 
depending on the applied importance. 

 



 

 

  

Figure A-75. Indoor temperatures and total power consumed for 100 residential and 100 commercial 
buildings controlled by using MFC with PV power constraint (w = 0.9). 

  

Figure A-76. Indoor temperatures and total power consumed for 100 residential and 100 commercial 
buildings controlled by using MFC with PV power constraint (w = 0.5). 
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Figure A-77. Indoor temperatures and total power consumed for 100 residential and 100 commercial 
buildings controlled by using MFC with PV power constraint (w = 0.15). 

Then, the team extended the problem to multiple loads (not necessary two different loads), each with 
different importance (i.e., priorities). The theoretical derivations are extended to n types of loads. 
Simulation results for three different types of loads are presented next.  

Simulations were carried with the developed strategy for 100 commercial HVAC units, 100 residential 
HVAC units, and 100 WHs for a given generated PV power profile. Figure A-78 shows indoor 
temperatures and total power consumed for 400 residential HVAC units split into four sets of equal 
importance/priorities. Figure A-79 shows the results for the same scenario but with different 
importance/priorities. The indoor temperatures for a few of the100 HVAC units with lesser priority (w = 
0) deviated outside the comfort band for some time, whereas the indoor temperatures for the100 HVAC 
units with higher priority (w = 0.5) became closer to the desired temperature set point. 

  

Figure A-78. Indoor temperatures and total power consumed for 400 residential HVAC units controlled by 
using MFC with equal priorities and PV power constraint. 
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Figure A-79. Indoor temperatures and total power consumed for 400 residential HVAC units controlled by 
using MFC with different priorities and PV power constraint. 

Figure A-80 shows the indoor temperatures and total power consumed for 100 residential HVAC units, 
100 commercial HVAC units, and 100 WHs controlled by using MFC with equal priorities and PV power 
constraint. Indoor temperatures for residential and commercial buildings went out of the comfort band for 
some time. To provide higher priority for residential buildings, the weight for residential buildings was 
increased to w = 1 and, as shown in Figure A-81, indoor temperatures for such buildings have always 
become within the comfort band. But to provide higher priority for commercial buildings, the weight for 
commercial buildings was increased to w = 1 and, as shown in Figure A-82, indoor temperatures for such 
buildings have always been within the comfort band. 

  

Figure A-80. Indoor temperatures and total power consumed for 100 residential HVAC units, 100 
commercial HVAC units, and 100 WHs controlled by using MFC with equal priorities  

and PV power constraint. 
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Figure A-81. Indoor temperatures and total power consumed for 100 residential HVAC units, 100 
commercial HVAC units, and 100 WHs controlled by using MFC with different priorities  

and PV power constraint. 

  

Figure A-82. Indoor temperatures and total power consumed for 100 residential HVAC units, 100 
commercial HVAC units, and 100 WHs controlled by using MFC with different priorities  

and PV power constraint. 

A.8 DETAILS ON CONTROLLER DEPLOYMENT  

The current controller is a centralized Python3 program. The endpoints are the Ecobee thermostats 
mounted to the wall of each zone. The controller has five different parts.  

1. Main controller loop: This coordinates the other modules and controls the timing of all data gathering 
and decisions. It also manages the API credentials for the Ecobee API. Outdoor weather data are also 
gathered by this module 

2. State measurement modules: These are internal representations of the Ecobee thermostats. They query 
the state and temperature data and enforce the controller decisions on the Ecobee thermostats. The 
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temperature data are queried every 3 min, and the data are smoothed for system identification and 
forecasting. 

3. Forecasting module: ARIMA forecasting is used to predict the temperature and PV input to be used in 
computing the optimal control. 

4. System identification module: This module is responsible for tracking histories and computing the 
state matrices used by the optimization function. This is done by solving an LS regression.  

5. Optimization module: This module is responsible for computing the optimal control. A mixed integer 
linear programming problem is solved via branch-and-cut to calculate the control over the control 
horizon (1 h). The optimization is implemented by using the COIN-OR solver and the Pulp Python 
interface. 

Additionally, all data input and control output are logged into a MySQL historian. The controller 
architecture is shown in Figure . One priority for the current MPC controller was to move to a cloud-
based application. This eased deployments and system status monitoring as opposed to on-site hardware 
deployments. The cloud infrastructure used by the ORNL team is AWS. In AWS, the controller will be 
deployed on a virtual machine via an EC2 instance. Because the control endpoints are Ecobee controllers 
accessed through the Ecobee API, the virtual machine will have no difficulty in reaching these points if 
the Ecobee controllers maintain an internet connection. 

 
Figure A-83. Control architecture. 

The fundamental controller deployment will remain the same, using a Python application with 
components responsible for gathering endpoint data, performing forecasting data forecasting, and solving 
the optimization problem. Aside from being hosted on an Amazon EC2 instance, an additional change is 
that data gathering is linked to the optimization computation through a local, short-time line SQLite 
database. This database easily allows for the validation and preprocessing of data before the control 
computation. These measurements are also linked to the AWS service DynamoDB, in which they are held 
for a longer period of time.  



 

 

In addition to moving to the cloud deployment, various features were added, such as better data 
preprocessing, to assist with forecasting solar data and system identification. In the future, live PV 
measurements will be implemented for the PV gathering. However, this measurement is currently taken 
from historical measurements. This offers a consistent baseline to test the control against. All application 
components can be easily transferred to any single-board computer, acting as a local site controller, such 
as a Raspberry Pi or Intel Nuc. Alternatively, the control is operated from a cloud infrastructure, such as 
an Amazon EC2 instance. 

Because control actions are only taken once every 10–15 min, there is an interval of time within which 
the controller is only passively monitoring the endpoints but has no mechanism to compile an image of 
the system at large or take corrective action. The development team investigated ways in which a system 
monitoring process can be put in place. This included hard boundaries to ensure that the building’s 
comfort boundaries are being enforced outside the controller and monitoring grid state to take unexpected 
corrective action in the event of a sudden change in that state. 

Another development is that the data gathering component and optimization component were formerly 
separated in execution and are now linked by an underlying relational database. Previously, this 
relationship was a dependency in the execution. That is, the data management component gathered the 
data and passed it to the optimization module. If an externality, such as a network error, interrupts the first 
stage in this process, then optimization success will be less reliable. By using an application database, 
these two stages can be unlinked temporally. The data management module is responsible for gathering 
data, storing the data, and dealing with any external disruptions. The optimization module can then be 
responsible for interpreting the data; performing any preprocessing required, such as interpolation or 
extrapolation; and computing the control. The control can then be passed back to data management for 
dispatch to the devices; this relationship is illustrated in Figure A-84. This controller is written as a 
Python application with an underlying data basis layer for managing traffic. The controller can interface 
with several commercial smart devices but has been primarily tested with the Ecobee smart thermostat. 
For smooth deployment, the application is being containerized and will be deployable through Docker or 
a distributed production deployment service, such as Kubernetes. Testing has shown this to be a suitable 
deployment architecture, supporting the reliability and compartmentalization of the software components. 

 
Figure A-84. Device/data management and optimization linked by the database. 



 

 

The final system architecture is shown in Figure A-84. Five distinct modules exist: the device and data 
management, the control and optimization, the optimization module, the application database, and the 
supervisor. 

The device and data management module is responsible for interfacing with the devices that control the 
HVAC units. Primarily, this has been Ecobee smart thermostats, but the system is modular enough to 
allow interfaces to other devices if those interfaces conform to the standard of having several required 
methods. Examples of these methods are get_temp and set_state. The actual implementation of these 
methods is left to the deployment considerations. 

Once the application starts, the system creates virtualized objects that represent the thermostats and then 
creates a process by which the physical devices are polled through the interfaces at regular intervals. The 
gathered data are then deposited into the application database. Additionally, the poll process checks for 
scheduled control actions and dispatches to the physical devices, if necessary. 

The control and optimization module is responsible for coordinating the control process at each control 
period. The control process is a separate process from the device polling and works at a different 
timescale. At the start of each control period, the control module pulls in required data from the 
application databases, such as state information and environmental data, then performs system 
identification and forecasting, and finally calls the optimization module to compute the control. This flow 
is illustrated in Figure A-85. 

 
Figure A-85. Control flow. 

The optimization module is the code that directly computes the optimal control by using the data 
aggregated by the control module. The optimization is written by using the Pulp Python interface and 
connects to the cut-and-branch COIN-OR solver. This is an open-source solver. Although restricted to a 
subclass of convex problems, the solver does not require the expensive license subscriptions that 
commercial solvers require. However, if a more complex optimization is formulated, then the new solver 
can be interchanged. 

The application database is an SQL database and accessible to all code modules. Historical data are stored 
here, and older data are purged from the system at intervals. Including the database allows for the 
asynchronous operation of the control and data gathering processes because the control module can 
examine and validate the data in the database at its chosen time to make the correct control decisions. 



 

 

Breaking the temporal dependency of the control on data gathering has led to a more robust and resilient 
system in controller testing. The database is also fully interchangeable, depending on the deployment 
requirements. 

The supervisor module sits outside the framework of the Sunlamp controller and exists to ensure that the 
controlled environment remains stable in the face of inaccurate data or unpredicted behavior. That is, if 
the building moves outside acceptable comfort boundaries, then the supervisor will step in to force the 
system back to comfort boundaries and then relinquish control back to the MPC controller. 

The final workflow comprises three main stages: controller configuration, data gathering, and control 
computation and dispatch. This system timeline is described in more detail in Figure A-86. 

 
Figure A-86. Application flow diagram. 

The final software package comprises 2,235 lines of Python code, not including any additional code 
required to deploy the software into different environments. For distribution, this code will be uploaded to 
a public code repository, such as GitHub or GitLab. In the future, testing will continue while weather is 
favorable alongside incremental improvements to any software bugs that arise. 

Control periods occur every 12 min and comprise a data-gathering phase, computing the control and then 
enforcing the control decisions. The control workflow can be seen in Figures A-87 and A-88.  



 

 

 
Figure A-87. Timing diagram for the MPC controller. 

 
Figure A-88. Control workflow for the MPC control. 

A.9 UNCERTAINTY ANALYSIS 

A.9.1 Uncertainty Analysis for Building Power Consumption 

This section assesses the variability in the building power consumption as a result of weather, occupancy 
variables, and various sources of uncertainty in model parameters and model fidelity. The team started 
from an EnergyPlus model of the building, which was subjected to an uncertainty analysis (UA). The UA 
is based on the well-established propagation of sampled values of all uncertain variables.  

Building on prior efforts, the Georgia Tech team established an Uncertainty and Risk Analysis 
Workbench (GURA-W) [153–154] to add rigor to the process based on generic preestablished uncertainty 
ranges of EnergyPlus model parameters. Moreover, the workbench allows the modeler to add model form 
uncertainties that represent discrepancies in various EnergyPlus modules, define time series for weather 
and occupancy variables, and conduct a sensitivity analysis for selected outcomes of the simulation. 
Figure A-89 shows the architecture of GURA-W. 



 

 

 
Figure A-89. The architecture of the UA tool (GURA-W). 

One main deliverable of the EFRI project is the uncertainty quantification (UQ) repository that contains 
quantified and validated uncertainty distributions, as well as stochastic models for weather and occupancy 
variables. Additionally, model form uncertainties are seeded within the EnergyPlus model because 
internal stochastic processes representing model discrepancies. For this reason, a customized (i.e., 
recompiled) version of EnergyPlus is embedded in GURA-W. Examples of model form uncertainties are 
the urban heat island effect, local wind speed and pressure, temperature stratification, and convective heat 
transfer. This approach was used on the DOE small office reference building to inspect the variability of 
power consumption patterns, particularly to verify the effect on the dominant frequencies in the patterns. 
Figure A-90 illustrates the power duration curve in which the shaded band shows the effect of 
uncertainties. Figure A-91 illustrates the sensitivity analysis results. The team observed that the 
uncertainty in power peak is about 20–30% and that the variability in occupancy, lighting, and appliance 
scenarios has the largest influence. Additionally, only a small set of building parameters has a relevant 
impact on resulting power uncertainty. 

  

Figure A-90. Power duration curve for a building 
power consumption. 

Figure A-91. Sensitivity analysis results for a 
building power consumption. 

 



 

 

Moreover, the frequencies in the power consumption were also investigated. Figure A-92 illustrates a 
typical outcome.  

 
Figure A-92. Frequency-domain analysis of frequencies for a building power consumption. 

When subjected to an UA for the mentioned sources of uncertainty in the small office reference building, 
a relatively small impact on the frequency distribution was found, as illustrated in Figure A-93 for 
summer.  

 
Figure A-93. Sensitivity analysis results for the frequencies in the building power consumption. 

The results in this section show that a dynamic simulation with embedded uncertainty adequately reveals 
the magnitude of power consumption variability in the demand side. 

A.9.2 The Analysis of Zonal Controllability in HVAC System Power Interruption 

The developed controllers in this project schedule buildings HVAC systems based on the fact that they 
can operate without HVAC service for a specific length of time due to their slow dynamics (i.e., time 
constants). It will cause the space temperature to exceed the set point and increase gradually. The speed at 
which this and the recovery afterwards occur depends on the characteristics of building. To capture this 
“controllability” phenomenon, a controllability measure was introduced. From a high-level point of view, 
it is reasonable to assume that a measure of building controllability is related to three main building 
characteristics: the building active thermal mass, the daily load profile, and the capacity of the HVAC 
system.  

As a measure of building controllability, defining three performance indicators is appropriate:  

1) Unmet space temperature period, which is defined as the time that:  



 

 

 𝑇. > 𝑇HK; + 1𝐾.  (A-95) 

2) Maximum temperature difference between 𝑇. and 𝑇HK;. 

3) The 12th (1 h) highest value over time steps of the temperature difference between 𝑇. and 𝑇HK;.  

In this study, all input parameters are normalized per 1 m2 of floor area. The cooling system is controlled 
based on on/off strategy to reflect the central control logic. The governing equation is shown as follows: 

 𝐶 :P"
:;
= 𝑄QR0: − 𝛼𝑄LRRQ, (A-96) 

 𝑄LRRQ = 𝑄L0< ∗ 𝜂 ∗ (𝑇H<0LK − 𝑇HK;) || 𝑄LRRQ ≤ 𝑄L0<,  (A-97) 

where C [J/m2] is the equivalent heat capacity of building mass; 𝑄QR0: is the total building heat gain, 
which is generated for a typical office building in a given climate zone in EnergyPlus; 𝑄LRRQ is the cooling 
supplied by the HVAC system; 𝜂 is the HVAC response coefficient; and 𝛼 indicates the availability of the 
HVAC system, which is 0 during a power interruption period. t 𝑄LRRQ is capped between zero and the 
HVAC cooling capacity, which is known based on the design or nameplate information. 

The hypothesis is that the value of the controllability measure generated with this simple model with the 
values for a given building substituted in the model can be used as a suitable indicator to benchmark the 
controllability of any building. Figure A-94 shows the correlation between the value of the postulated 
measure with the value of the measure based on EnergyPlus results. If the value of the measure meets the 
benchmark, then it will be deemed a good candidate for the developed control approach.  

 
Figure A-94. Value of the postulated measure with the value  

of the measure based on EnergyPlus results. 

Based on the hypothesis made in the previous section, four key variables were chosen as the input: HVAC 
capacity, building active thermal mass, HVAC nonavailable starting point, and HVAC nonavailable 
duration. Each input variable was categorized into five levels, and the simulation period was the 64 



 

 

weekdays from June to August. This led to roughly 40,000 data points. The supervised learning method, 
k-nearest neighbors (KNN), was used to train a model to compute the controllability measure. To 
benchmark a given building, a threshold that indicates the minimum necessary controllability is defined. 
The inputs are the four key variables, and the output is the controllability measure. 

Two experiments were conducted with minimum unavailability duration as 15 min and 30 min, 
respectively. The experimental setup and results are shown in Tables A-8 through A-10. 

Table A-8. Experimental setup for the controllability test. 

Level Cooling capacity 
(%) Thermal mass level Nonavailable hour Nonavailable duration 

I 90 Very light 5:00 0 min (0 min) 
II 100 Light 8:00 15 min (30 min) 
III 110 Medium 11:00 30 min (60 min) 
IV 120 Heavy 14:00 45 min (90 min) 
V 130 Very heavy 17:00 1 h (2 h) 

Threshold of 15 min Unmet hour < 0.5 h Temperature max < Tset + 4K 
Threshold of 30 min Unmet hour < 1.5 h Temperature max < Tset + 4K 

 

Table A-9. Prediction accuracy for 15 min. Table A-10. Prediction accuracy for 30 min. 

  
 

The results show that the KNN model can accurately predict the controllability of the building. However, 
the supervised learning method requires an EnergyPlus model and simulation for every combination of 
the four building parameters. This requires a large modeling effort and expensive simulations. Therefore, 
the team attempted to develop a reduced building model (i.e., a one-node RC model to reduce the 
modeling and simulation effort). Although the RC model was not an accurate representation of each 
building, the generation of a controllability measure with the RC model could still be sufficiently 
accurate. To test this assumption, the team conducted an experiment with the RC model, generating many 
data samples by choosing different combinations of HVAC capacity, building active thermal mass, and 
weather conditions, which were represented by a load shape function, in combination with different 
interruption scenarios (i.e., different HVAC nonavailability starting points and durations). The result 
based on this experiment indicate the control potential of a building under any given load, HVAC 
capacity, and mass availability operating in different HVAC nonavailability scenarios. The results show 
that the first-order RC model can predict the controllability correctly in 80% of all cases. In future work, 
the experiment could be repeated with a higher order RC model to see whether the 80% accuracy could be 
increased significantly. 

Predicted good Predicted bad Predicted good Predicted bad
Actual good 6430 125 Actual good 6853 624
Actual bad 220 5100 Actual bad 386 4012
Accuracy Accuracy97% 91%

Prediction accuracy in 15 min experiment Prediction accuracy in 30 min experiment
Predicted good Predicted bad Predicted good Predicted bad

Actual good 6430 125 Actual good 6853 624
Actual bad 220 5100 Actual bad 386 4012
Accuracy Accuracy97% 91%

Prediction accuracy in 15 min experiment Prediction accuracy in 30 min experiment



 

 

A.9.3 Uncertainty Quantification of RC Model 

To develop a fast-reacting building energy model for predictive control, the team developed an RC model 
calibrated on simulation results generated with EnergyPlus. The DOE reference building EnergyPlus 
model of the small office was used for generating simulated results that mimic the actual behavior of the 
building under a designated control. The team applied 212 uncertainty factors to the simulation with 
GURA-W to represent all possible realizations and usages of a building. The number of unmet hours 
calculated with the RC model was compared with the unmet hours generated with EnergyPlus. The 
comparison was used to examine the RC model’s accuracy under various hypothetical power availability 
scenarios.  

The following two RC model usage variants were examined in the development of the RC model: 

• the RC model used to predict room temperature in 30 min intervals (one time step) and 
• the RC model used to predict room temperature for 3 h (six time steps). 

The following assumptions were made. 

• All input variables used in the RC model training are measurable during the application to a real 
building. 

• The relationship between thermal cooling energy and HVAC electricity consumption is known. 

In a future stage of the development, these assumptions will be further analyzed to characterize the 
uncertainties in these assumptions and propagate them in the use of the RC model to verify suitability. 

The RC model is developed as follows: 

𝐶 ∗ :P
:;
	= 	 +

S
∗ (𝑇0	 − 	𝑇.) + 𝛼+ ∗ 𝑄TRQ + 𝛼8 ∗ 𝑄U/; + 𝑄LRRQ,                   (A-98) 

where: 

𝑇0 is ambient temperature, 
𝑇. is room air temperature at the target zone, 
𝑄U/; is hourly reference value for internal heat gain (no uncertainty included),  
𝑄VW0L is cooling rate for the target zone, and 
𝑄TRQ is global solar radiation on the façades the target zone. 

In an actual field application, these RC model parameters are calibrated in real time with temperature and 
power data that are continuously collected from the actual building. These measurements must be 
augmented by predictions of weather and usage scenarios. Together with the imprecise conversion from 
power to thermal cooling, it will introduce uncertainties that must be considered in the calibration of the 
parameters. As mentioned, this will be studied in the next stage of the project. 

In the current stage, a UA with EnergyPlus was used to create a synthetic training dataset for the RC 
model calibration. The UA (i.e., the propagation of the regular set of “design uncertainties”) serves a 
special purpose that is very different from the real-time calibration setting. In those settings, the actual 
building is available and observable; hence, the set of uncertainties and their ranges are much smaller. 
The team used the “full” UA to reflect the design situation in which the building was only designed and 
not yet realized. In such cases, the RC model analysis is done to reveal the utility of the RC model 
approach during a not yet constructed facility (i.e., in the design of the overall control system). For this 



 

 

purpose, the team used the EnergyPlus+GURA-W simulation outcomes as the training data for the RC 
model parameters (𝑅, 𝐶, 𝛼+, 𝛼8). Given the uncertainties in the simulation outcomes, this will result in 
distributions of the value of these parameters. The results show that in some cases, the RC model is not 
trainable or shows incorrect prediction for extreme outliers (5–20%). The RC model must be trained on 
the last available inputs within a rolling window of 72 h to avoid too much impact of scenario uncertainty 
(SU) (e.g., set point schedule). The analysis is done for a five-zone simulation in which the RC model is 
trained for each zone separately with the temperature data of that zone. Obviously, the accuracy of the RC 
model prediction of unmet hours varies per zone, as shown in Table A-11. Table A-11 shows the average 
3 h prediction accuracy of the RC model over all uncertainty runs in the test period. The RC model 
generally exaggerates the number of predicted unmet hours. 

Table A-11. The average prediction accuracy of the RC model over all uncertainty runs. 

Zone Unmet hour Correct 
prediction 

Wrong 
prediction 

Correct 
percentage (%) 

Wrong 
percentage (%) 

South 104.5 82 69 78.5 66.0 

East 103.5 94 50 90.8 48.3 

North 108 83 72 76.9 66.7 

West 103 7805 70 76.2 68.0 

Center 109 108.5 20 99.5 18.3 

 

In the building thermal model in Eq. (A-98), the cooling amount from HVAC system is usually assumed 
to be known and treated as an input variable for both model training and prediction. The Qcool in 
Eq. (A-98) represents the cooling amount that goes to the room. There are some weaknesses of using the 
term Qcool, including the following. 

1. The cooling delivered by the HVAC system to a zone cannot be measured directly. The best 
alternative is to express it as Qele*COP, which is only correct for the thermal cooling delivered to the 
whole building. 

2. The COP is not constant over time, hence the calculated cooling amount is inaccurate. 

3. The amount of cooling generated by the HVAC system is distributed to the separate zones of a 
building in a way that is dependent on the distribution layout and control. At best, the actual Qcool to a 
zone of the building can be approximated given the attributes and controls of the distribution system. 

To obtain the exact Qcool in model training and predictive control, an auto feedback loop was applied in 
the RC model to mimic the real control logic in the HVAC system. This leads to: 

𝐶 :P
:;
= +

S
(𝑇0	 − 	𝑇.) + 𝛼+𝑄TRQ + 𝛼8𝑄U/; + 𝜂(𝑇. − 𝑇HK; + 𝛳).                    (A-99) 

In the feedback loop, 𝑇. is the room air temperature, 𝑇HK; is the set point temperature, 𝛳 is the setback 
temperature, and 𝜂 is the conversion factor to 𝑄LRRQ. 𝛳 and 𝜂 are the parameters calibrated from model 
training. The model training is accomplished with a calibration over a rolling window of 72 h, which 
means that the parameters in the RC model are recalibrated every hour with the newest 72 h data points. 



 

 

This is currently conducted with simulation (EnergyPlus)-generated “sensor data” because as the real 
sensor data are not available. The temperature set point is used as an input variable. Compared with Qcool, 
the temperature set point over time is much easier to obtain and is usually kept on a constant schedule in 
office buildings. In this form, the cooling amount calculated from the auto feedback loop can capture the 
required cooling amount that in this simple one-node RC model goes to the active thermal mass. 

Based on the same training and prediction setup introduced previously, the newer model with 
autofeedback loop was compared with the original one. In Table A-12, there is 20–50% reduction of the 
mean absolute error (MAE) prediction by implementing the autofeedback loop. The distribution of the 
prediction error after a certain time is shown in Figure A-95.  

Table A-12. Temperature prediction accuracy.  

  
 

 
Figure A-95. Distribution of the prediction error after a certain time. 

The simple one-node RC model is obviously unable to represent the building dynamics very accurately. 
This discrepancy can be expressed as RC model form uncertainty (MFU). The Georgia Tech team set out 
to quantify MFU based on a comparison between EnergyPlus outcomes with embedded uncertainty and 
RC model outcomes. This was done for one specific zone of the small commercial DOE reference 
building. The team assumed that this setup would lead to a quantified MFU of the RC model that is 
indicative of the MFU magnitude for a large class of commercial buildings. Further work must confirm 
this assumption, but first it must be established whether the MFU represents a significant source of error 
in using the RC model to predict building behavior. This MFU quantification was done for the one-node 

Steps 1 2 3 4 5 6
All Hours 0.40 0.71 0.77 0.76 0.85 0.92
Office Hour 0.82 1.39 1.40 1.30 1.41 1.47
Steps 1 2 3 4 5 6
All Hours 0.27 0.43 0.53 0.60 0.66 0.72
Office Hour 0.43 0.64 0.71 0.74 0.79 0.83

Auto Feedback

Orignal

Temperature Prediction Mean Absolute Error (1-6 steps) (30-180min) (C) 



 

 

RC model introduced previously and calibrated according to the procedure explained there. The process is 
shown in Figure A-96. 

 
Figure A-96. RC building model calibration using the MFU quantification process. 

The team performed the MFU quantification for each EnergyPlus simulation sample outcome generated 
by the GURA-W UA of the building. MFU was thus quantified based on the results of 360 EnergyPlus 
uncertainty samples, resulting in 360 outcomes for July with all typical—212, in this case—uncertainty 
parameters performed in GURA-W. The RC model was trained in the rolling window of 3 days and then 
used to produce the temperature prediction for the following period. The MFU was then quantified by 
using a statistical training technique that expresses the error between the two models. The quantified 
discrepancy can now be added to the RC model equation as a 𝛿, leading to: 

𝐶 :P
:;
= +

S
(𝑇0	 − 	𝑇.) + 𝛼+𝑄TRQ + 𝛼8𝑄U/; + 𝜂(𝑇. − 𝑇HK; + 𝛳) + 𝜹.           (A-100) 

The MFU quantification in the RC model shows a -0.3°C mean error with a 1.2°C standard deviation over 
144 time steps, as shown in Figure A-97. As expected, because of the effect of the autofeedback loop, the 
mean prediction error was maintained at a relatively small value and did not increase over time; the 
standard deviation increased rapidly in the first 10 time steps before it converges to a constant value. 

  
Figure A-97. The MFU quantification in the RC model over 144 time steps. 

Several statistical methods were used in the quantification, including regression methods, Gaussian 
process, Brownian motion, and time series models. The outcomes show that: (1) the regression methods 
are inappropriate for quantifying MFU because the correlations between the parameters and inputs of the 
RC model and the prediction error are insignificant, (2) the autofeedback loop bounds the variation of the 
prediction error to a form of Brownian motion, and (3) the most effective method proves to be a time 
series model with a lag-2 autocorrelation based on the current training data (i.e., the difference between 
the two model outcomes).  

SU captures the uncertainty of input variables related to internal scenarios (e.g., usage) and external 
scenarios (e.g., weather) to which the building is subjected. These can often not be known exactly, which 
is the case for the varying internal heat gain (Qint) and cannot be measured directly. In practice, at best, the 



 

 

mean people and plug load density and schedule can be derived from the building type and zone function 
from which a mean profile of the internal heat gain can be derived. However, the dynamics around the 
mean are usually unknown. The outdoor air temperature (Ta) and global horizontal solar radiation 
intensity (Qsol) are obtained from weather forecasts or a local prediction model. However, they are not 
exact, and the resulting prediction errors must be introduced into the RC model. For the RC model 
calibration, the measured value of Ta and Qsol can be used, but in the consequent use of the RC model, 
only the forecast weather can be used for prediction. For Qint, there is no measured value available, so an 
approximation of Qint based on average profile plus uncertain dynamic fluctuations should be used for 
training and prediction. To study the influence of SU on the RC prediction accuracy, a 100 run RC model 
training and prediction was performed with uncertainty in the weather and scenario. Table A-13 shows 
the MAE with SU over all runs; the SU only led to a 5–15% MAE increase. 

Table A-13. Temperature prediction accuracy. 

 
 

Figure A-98 shows the band of temperature prediction with SU compared with the actual temperature. 
Along with the lengthening of the prediction period, the error in the temperature prediction increased 
significantly. 

 
Figure A-98. The temperature prediction with SU compared with the actual temperature. 

From this analysis, the error introduced by SU is relatively small compared with the error introduced by 
MFU. The relative dominance of the role of MFU indicates that it makes sense to try to decrease the 
magnitude of MFU, which could be achieved by an RC model improvement (e.g., by a two-node RC 
model). 

Steps 1 2 3 4 5 6
All Hours 0.27 0.43 0.53 0.60 0.66 0.72
Office Hour 0.43 0.64 0.71 0.74 0.79 0.83
Steps 1 2 3 4 5 6
All Hours 0.29 0.46 0.56 0.64 0.71 0.79
Office Hour 0.45 0.67 0.74 0.80 0.85 0.91

with All SU

Without SU

Temperature Prediction Mean Absolute Error (1-6 steps) (30-180min) (C) 



 

 

A.9.4 Integrating the Building Energy Model Inside the Overall System Architecture 

The work in this quarter focused on integrating the building energy model inside the total system 
architecture, as proposed by ORNL (Figure A-99). The team used this architecture to develop in vitro 
simulation testing for the embedded system that will be deployed later for real-time decision-making. 

 
Figure A-99. Control information flow. 

The main purpose of the testing environment is to simulate variable building behavior and test the 
prediction and control algorithms (Figure A-100).  



 

 

 
Figure A-100. In vitro testing in simulation test bank. 

There are four modules in the test bank. These modules exchange the information recurrently in every 
iteration. In the current study, 1 h is used as the interval for one iteration. The interval for the on/off 
control signals for each HVAC unit is 10 min (i.e., six control steps per hour). 

The modules are detailed as follows. 

1) Building Module in MATLAB  

A building module was developed in MATLAB to mimic real building behavior in the test bank. It 
runs 10 small office buildings with five zones in each building.  

The MATLAB building module is a high-order finite element model that captures the heat transfer 
process in the buildings. In this model, each building component is represented by a node, and the 
thermal interactions between them form a network between nodes. The approach is described in detail 
in Augenbroe et al. [155]. 

Variability over buildings and zones comes from different geometry and internal gain features. Each 
zone contains a unitary cooling unit with modulated control that responds to the thermal load. The 
availability of the cooling units is controlled by the center control. The MATLAB model takes real 
weather data as input and provides the information of building behavior for training an auto-adaptive 
reduced order model for each zone. Building behavior includes zone temperatures over time, the 
mean profiles of zonal internal heat gains, and HVAC energy consumption profiles. At the end of 
each iteration, the MATLAB building model receives the control signals provided by the center 
control and simulates the resulting building behavior.  



 

 

2) Auto-Adaptive Reduced-Order Module 

The auto-adaptive reduce order module is a fast-reacting component in the test bank for predicting 
zone temperature and energy consumption. It is autotrained from the information of building behavior 
and real weather data. Based on the work reported in the previous quarter, a two-node RC model is 
proved to have the highest performance for balancing prediction accuracy and model complexity. The 
formulation of the two-node RC model is shown as follows: 

(A-101) 

This two-node RC model is retrained every hour by using the training data from the last 3 day moving 
window. Because all 50 zones have different behavior, there are 50 two-node RC models trained in 
every time step with the building behavior generated by the simulation. After training, each RC model 
is used to predict the room air temperature and energy consumption based on the weather forecast and 
predicted internal gains with or without the running HVAC unit, as dictated by the center control. 

3) PV Forecast Module 

The team at ORNL provides this model for the prediction of hourly PV generation based on the solar 
radiation forecast.  

4) Center Control 

The center control performs the optimization to match the HVAC consumption with PV generation 
while maintaining a suitable zone comfort. The objective function is shown as follows: 
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F*+ ,                 (A-102) 

where:  

𝑖 is the zone identity (from 1 to 50). 
𝑘 is the time steps to reach the prediction horizon (for now assumed to be from 1 to 36, which is 

10 min to 6 h). 
𝑢.,F 	 are the control sequences for each HVAC unit. The control options include forced on, forced 

off, and no forced control. 
𝑓(𝑢.,F)	 is HVAC energy consumption of each zone at each step. 
𝑃<W,F is the PV generation at each step. 
𝜀. is the temperature deviation from the original set point. 
𝑄 & 𝑅 are weighting factors. 

Because of the linear formulation of the two-node RC mode, this multi-objective optimization will be 
realized by quadratic programming to minimize the run time. 


